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Abstract

This thesis consists of three articles.

In the first article, we give examples of universal L∞-algebroids, which
algebraically desingularize singular foliations, of some foliations on a vector
space V induced by linear Lie group actions. Universal L∞-algebroids were
introduced by Laurent-Gengoux-Lavau-Strobl. We then give a constructive
way to directly compute some invariants of the singular foliation, defined by
Laurent-Gengoux-Lavau-Strobl in a non-constructive way.

In the second article, we study the stability of fixed points of various geometric
structures, extending the results of Crainic-Fernandes for fixed points, and the
results of Dufour-Wade. We do this by showing that the stability problem for
a fixed point is an instance of the following question about differential graded
Lie algebras: given a differential graded Lie algebra g, a differential graded Lie
subalgebra h, and a Maurer-Cartan element Q ∈ h of degree 1, when do all
Maurer-Cartan elements of g near Q belong to h up to gauge equivalence?

We then give a sufficient criterion for a positive answer to the question about
differential graded Lie algebras when h has degreewise finite codimension in
g, and as application, we obtain stability criteria for fixed points of several
geometric structures, such as Lie n-algebroids, Courant algebroids and Dirac
structures admitting a complementary Dirac structure.

In the third article, we generalize the main result of the second article to L∞[1]-
algebras and L∞[1]-subalgebras. This generalization then allows us to give a
criterion for stability of fixed points of a Dirac structure, without needing a
complentary Dirac structure as in the second article.
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Beknopte samenvatting

Dit proefschrift bestaat uit drie artikelen.

In het eerste artikel geven we voorbeelden van universele L∞-algebroïden,
geïntroduceerd door Laurent-Gengoux-Lavau-Strobl, geassocieerd met singuliere
foliaties die afkomstig zijn van een lineaire Lie groepswerking op een vectorruimte
V . Universele L∞-algebroïden zijn objecten die singuliere foliaties algebraïsch
desingulariseren. Vervolgens geven we een constructieve methode om bepaalde
invarianten van singuliere foliaties te berekenen, die door Laurent-Gengoux-
Lavau-Strobl op niet-constructieve wijze gedefinieerd waren.

In het tweede artikel bestuderen we de stabiliteit van vaste punten van
verschillende meetkundige structuren. Dit veralgemeniseert de resultaten van
Crainic-Fernandes voor vaste punten, en de resultaten van Dufour-Wade. Om
dit te bereiken, tonen we eerst aan dat het stabiliteitsprobleem voor vaste punten
een voorbeeld is van het volgende vraagstuk over differentiaal gegradeerde Lie
algebra’s: zij g een differentiaal gegradeerde Lie algebra, en h een differentiaal
gegradeerde Lie subalgebra. Zij Q een Maurer-Cartanelement van h van graad
1. Wanneer zijn alle Maurer-Cartanelementen van g nabij Q ijkequivalent met
een element van h?

Vervolgens geven we een voldoende voorwaarde om de bovenstaande vraag
over diferentiaal gegradeerde Lie algebra’s positief te kunnen beantwoorden in
het geval dat h graadsgewijs eindige codimensie heeft in g. Als gevolg hiervan
verkrijgen we stabiliteitscriteria voor vaste punten van verschillende meetkundige
structuren, zoals Lie n-algebroïden, Courant algebroïden en Diracstructuren die
een complementaire Diracstructuur toelaten.

In het derde artikel veralgemeniseren we het hoofdresultaat van het tweede
artikel naar L∞[1]-algebra’s en L∞[1]-subalgebra’s. Deze veralgemenisering laat
ons toe een voorwaarde te formuleren voor de stabiliteit van vaste punten van
een Diracstructuur, zonder een complementaire Diracstructuur te vereisen.
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Chapter 1

Introduction

This thesis contains three articles, written over the course of my PhD. These
articles are all related to singular foliations, or aspects of their deformation
theory. More precisely, we are concerned with the stability of fixed points, under
deformations of various geometric structures that induce a singular foliation.
In this introduction, we give a brief overview of the main results, provide the
preliminaries and give an outline of the chapters.

1.1 Brief overview

1.1.1 Singular foliations

By a singular foliation on a manifold M , we mean a C∞(M)-submodule of the
vector fields, closed under the Lie bracket of vector fields. Such a submodule
induces a partition of M into connected, immersed submanifolds of different
dimensions called leaves. As the submodule is generally not projective, it is
not given by the sections of some vector bundle by the Serre-Swan theorem.
Consequently, the number of local generators is not constant over M . For
instance, let M = R2 with coordinates (x, y). Then for the foliation of all vector
fields on R2 vanishing in the origin, any p ̸= 0 admits an open neighborhood
on which the foliation is generated by the vector fields ∂x, ∂y, while for any
neighborhood of 0 there must be at least four generators: x∂x, x∂y, y∂x, y∂y.

One way to algebraically desingularize a singular foliation was provided in
[LGLS20]. After picking a projective resolution of the module by sections of
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2 INTRODUCTION

vector bundles, the authors define an algebraic structure on the projective
resolution, which lifts the Lie bracket of the singular foliation. This lifted
bracket however is no longer a Lie bracket, but satisfies the axioms of a Lie
algebra in a weaker sense. The result of [LGLS20] is non-constructive, but
the authors give plenty of examples. One of the difficulties lies in needing an
projective resolution, which is already non-trivial for singular foliations induced
by infinitesimal linear actions of Lie algebras on vector spaces. In particular,
[LGLS20] contains the examples of the natural actions of sl2 (traceless 2 × 2-
matrices) on R2, sop,q (skew-symmetric matrices with respect to a symmetric
bilinear form of signature (p, q)) on Rp+q, gln (all n× n matrices) on Rn and
the action of a complex semisimple Lie algebra on itself by the adjoint action.
Although these foliations are contained in the singular foliation induced by some
gln on Rn, the restriction of a resolution to a submodule is not a resolution in
general.

In Chapter 2, we present new examples of this construction for the following
Lie subalgebras of gln acting on Rn:

- sln, the algebra of traceless endomorphisms, extending the result for sl2,

- gln,k, the algebra of endomorphisms that preserve a fixed k-dimensional
subspace,

- sp2n, the algebra of endomorphisms of R2n preserving the standard
symplectic form (

0n −Idn

Idn 0n

)
on R2n,

and their analogues for vector bundles.

We then give a constructive way to extract invariants out of a singular foliation,
which were previously defined through the construction of [LGLS20], without
needing to construct a projective resolution.

1.1.2 Stability

In Chapters 3 and 4, we discuss some aspects of the deformation theory of
geometric structures inducing singular foliations. More precisely, we will consider
singular foliations which are induced by geometric structures on vector bundles,
and investigate the following question:
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Given a geometric structure that induces a singular foliation on the manifold
M , and a zero-dimensional leaf p ∈ M , when do all nearby geometric strucures
of the same kind also have a zero-dimensional leaf near p?

In this case, the leaf is called stable. The stability question for Poisson manifolds
and Lie algebroids was considered in [CF10] for general compact leaves and in
[DW06] for higher order singularities, and the authors gave sufficient conditions
for a positive answer.

Poisson manifolds are manifolds equipped with a bivector field π ∈ Γ(∧2TM)
satisfying an integrability condition. Zero-dimensional leaves of the underlying
foliation then correspond to points p ∈ M such that πp = 0. On 2-dimensional
manifolds, the integrability condition is vacuous.

On M = R2 with coordinates (x, y), consider for example the bivector fields
π1 = (x2 + y2)∂x ∧ ∂y and π2 = x∂x ∧ ∂y. Then the origin is a zero of both π1
and π2. It is stable as zero of π2 by the intermediate value theorem, but not as
zero of π1: the bivector field

πϵ = π1 + ϵ∂x ∧ ∂y

is non-vanishing for ϵ > 0.

Stability of a zero is necessary for the more natural question on rigidity of the
Poisson structure: a Poisson structure π is called rigid in a neighborhood of a
zero p, if any Poisson structure nearby is isomorphic to π on a (possibly smaller)
neighborhood.

Rigidity is rare, and often difficult to show, requiring tools from analysis such
as the Nash-Moser fast convergence method. Besides being a tool to disprove
rigidity, there are instances where stability together with a normal form result
implies rigidity. Indeed, the bivector field

πso3 := x∂y ∧ ∂z + y∂z ∧ ∂x + z∂x ∧ ∂y

is Poisson, and the origin is a stable zero. Moreover, for π′ near πso3 , it can
be shown that if q is a point such that π′

q = 0, the first order approximation
of π′ around q is isomorphic to πso3 . Finally, using the normal form result of
[Con85], one can show that π′ is isomorphic to its first order approximation,
concluding rigidity of πso3 .

The stability of a zero-dimensional leaf of a geometric structure does not only
depend on the underlying singular foliation, but depends on the geometric
structure. An instance of this is shown in [CF10]: the Poisson structure π2 as
above induces the foliation generated by x∂x, x∂y, with partition

R2 = {x > 0} ⊔ {x < 0} ⊔
⊔
y∈R

{(0, y)}.
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Recall that the origin is a stable fixed point.

However, the infinitesimal action ρ : g → X(M) of the non-abelian 2-dimensional
Lie algebra g = ⟨e1, e2 | [e1, e2] = e2⟩ on R2 given by ρ(e1) = x∂x, ρ(e2) = x∂y

induces the same foliation, but the origin is not a stable leaf: for ϵ ̸= 0, the
action ρϵ : g → X(M) given by

ρϵ(e1) = x∂x + ϵ∂y, ρϵ(e2) = x∂y

does not have any zero-dimensional leaves, as ρϵ(e1) is a non-vanishing vector
field.

Our goal is to extend the results of [CF10] and [DW06] to different geometric
structures. To do this, we develop a systematic approach to address stability
questions, making use of the algebraic framework underlying the deformation
theory of the geometric structure, and obtain a sufficient condition for stability
of zero-dimensional leaves. As application we can recover the known results of
[CF10] for zero-dimensional leaves, and the results of [DW06], as well as various
new results on stability for zero-dimensional leaves of:

i) higher Lie algebroids,

ii) Lie algebroid structures on vector bundles A, compatible with a fixed Lie
algebroid structure on the dual vector bundle A∗,

iii) Poisson-Nijenhuis structures (which include holomorphic Poisson struc-
tures),

iv) Courant algebroids,

v) Dirac structures.

Using i), we also obtain a stability result for zero-dimensional leaves of singular
foliations. Using a formal normal form result from [LGR21], we obtain a formal
rigidity result for singular foliations, using a similar argument as for πso3 above.
Moreover, the compatibility condition in ii) is the generalization of the condition
that identifies Poisson structures amongst general Lie algebroid structures on
the cotangent bundle.

1.2 Preliminaries

In this section we give some preliminaries. We define the objects that will
appear throughout the majority of the thesis, such as singular foliations, Lie
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algebroids, Poisson structures, Lie n-algebroids, and we describe the tools we
will use, such as graded geometry and L∞-algebras, as well as what role they
play in deformation theory.

1.2.1 Singular foliations

Let M be a smooth manifold. Intuitively, a singular foliation on M is a partition
of M into immersed, connected submanifolds of varying dimension called leaves.
Singular foliations appear naturally in differential geometry:

i) Any regular foliation can be viewed as a singular foliation for which the
dimension of the leaves is constant on M .

ii) If G is a Lie group with an action on a smooth manifold M , then the
orbits of the action give rise to a singular foliation on M .

iii) If X ∈ X(M) is a vector field, then its orbits give rise to a singular foliation
on M .

Examples ii) and iii) above are conceptually different. While example ii) directly
describes the partition, example iii) only describes the directions tangent to the
partition. To obtain the partition, the vector field X needs to be integrated.
For regular foliations, the classical Frobenius theorem (see for instance [Lee13])
gives a condition for regular foliations when the two descriptions are equivalent:

Theorem (Frobenius). Let D ⊆ TM be a vector subbundle. If Γ(D) is closed
under the Lie bracket, then there exists a partition M =

⊔
α Lα such that for

every p ∈ M , Dp = TpLα, where Lα is the unique leaf containing p.

In other words, the Frobenius theorem states that regular foliations are in
bijection with Lie subalgebras of the Lie algebra X(M) of vector fields, that are
the sections of some vector subbundle D ⊆ TM .

For singular foliations, the situation is more subtle, a historical overview can be
found in [Lav18]. One difference is that the partition of M does not uniquely
determine a Lie subalgebra: on M = R, the orbits of the vector fields Xk = xk∂x

are identical for each k ≥ 1, while there is no diffeomorphism of M mapping
Fk = {fXk | f ∈ C∞(M)} to Fl = {fXl | f ∈ C∞(M)} for k ̸= l. As such, we
define singular foliations taking the Lie subalgebra point of view, which is close
to the definition that was previously used in [Her62, Ste74, Sus73].
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Definition 1.2.1 ([LGLS20]). Let M be a smooth manifold. A singular
foliation on M is a subsheaf1 F of C∞

M -modules of the sheaf XM of vector fields
on M , which is

i) locally finitely generated,

ii) for every U ⊆ M open, we have [F(U),F(U)] ⊆ F(U).

Proof of the equivalence between the definitions can be found in [Wan17]. It
turns out that with this definition, a singular foliation induces a partition of M
into immersed submanifolds, called leaves:

Theorem ([Her62]). A singular foliation F induces a partition of M into leaves

M =
⊔
α

Lα,

such that for Lα the unique leaf through p, TpLα = spanR{Xp | X ∈ Fx}, where
Fx is the germ of F at x.

This result builds a bridge between the algebraic Definition 1.2.1, and the
intuitive geometric description given at the beginning of this section.

While Definition 1.2.1 is quite flexible, often the notion is too general. Therefore,
we will typically consider singular foliations for which the sheaf F is the image2

of a bracket-preserving map ρ : E → XM , where E is the sheaf of sections of a
vector bundle E → M equipped with some binary bracket on its sections. In
this case, conditions i) and ii) are automatically satisfied. We discuss a class of
these in the next subsection.

Unlike regular foliations, there is no local form for singular foliations around
a point. However, locally around every point p ∈ M the foliation is a product
of the vector fields on the leaf through p with a singular foliation which is
transverse to the leaves, and has p as a zero-dimensional leaf, as shown in [AZ13,
Proposition 1.4]. The foliation transverse to the leaves is independent of the
point p chosen on the leaf, and will be referred to as the transverse foliation.

1.2.2 Lie algebroids, Poisson manifolds and Courant algebroids

Let M be a smooth manifold. In this subsection, we introduce some geometric
structures which naturally induce singular foliations.

1As we work in the smooth category, we will usually not distinguish between sheaves and
global sections.

2As we work in the smooth category, the image of ρ at the level of sections is a sheaf.
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Lie algebroids

We first introduce Lie algebroids, which simultaneously generalize the tangent
bundle of a manifold, and Lie algebras, and were introduced in [Pra67].

Definition 1.2.2. A Lie algebroid over M is a triple (A, ρ, [−,−]A), where

i) A → M is a vector bundle,

ii) ρ : A → TM is a vector bundle map called the anchor,

iii) [−,−]A is a Lie bracket on the space of sections of A,

such that for all f ∈ C∞(M), x, y ∈ Γ(A),

[x, fy]A = ρ(x)(f)y + f [x, y]A. (1.1)

Equation (1.1), together with the Jacobi identity for [−,−]A implies that
ρ : Γ(A) → X(M) is a Lie algebra map. Consequently, the sheaf im(ρ) at the
level of sections defines a singular foliation on M .

Example 1.2.3.

- When M = {∗} is a point, then a Lie algebroid over M is simply a Lie
algebra.

- For any smooth manifold M , the tangent bundle (TM, id, [−,−]) is a Lie
algebroid M , where [−,−] is the Lie bracket of vector fields.

- Given a regular foliation, with underlying subbundle D ⊆ TM , let ι : D →
TM be the inclusion map. Then

(
D, ι, [−,−]

∣∣
Γ(D)

)
is a Lie algebroid.

- Let g be a Lie algebra with Lie bracket [−,−]g, and let ρ : g → X(M)
be a Lie algebra homomorphism, which is an infinitesimal action on M .
Then (g ×M, ρ̃, [−,−]ρ) is a Lie algebroid called the action Lie algebroid.
Here, for (v, p) ∈ g ×M ,

ρ̃(v, p) = ρ(v)(p) ∈ TpM,

and [−,−]ρ is the unique extension of [−,−]g satisfying (1.1).

In Chapters 3 and 4 we will encounter more examples and ways to construct
new Lie algebroids out of existing ones.

To any Lie algebroid, there is a naturally attached cohomology, which generalizes
the de Rham cohomology of a manifold, and the Chevalley-Eilenberg cohomology
of a Lie algebra.
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Definition/Lemma 1.2.4. Let (A, ρ, [−,−]) be a Lie algebroid. The exterior
algebra Γ(∧•A∗) carries a differential,

dA : Γ(∧•A∗) → Γ(∧•+1A∗).

For X0, . . . , Xk ∈ Γ(A), α ∈ Γ(∧kA∗) we have

dA(α)(X0, . . . , Xk) =
k∑

i=0
(−1)iρ(Xi)(α(X0, . . . , X̂i, . . . , Xk)

−
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Then d2
A = 0.

It was shown in [Vai97] that the data of a square-zero degree 1 derivation on
Γ(∧•A∗) is equivalent to a Lie algebroid structure on A.

Poisson manifolds

For a smooth manifold M , any Poisson structure induces a Lie algebroid
structure on T ∗M . A Poisson structure on M is a Lie algebra structure on the
algebra of smooth functions C∞(M), compatible with the multiplication, and
in this generality were introduced in [Lic77].

Definition 1.2.5. Let M be a smooth manifold. A Poisson structure on M is
a skew-symmetric R-bilinear map

{−,−} : C∞(M) × C∞(M) → C∞(M),

such that for f, g, h ∈ C∞(M),

a)
{f, {g, h}} = {{f, g}, h} + {g, {f, h}}

b)
{f, gh} = {f, g}h+ g{f, h}.

Example 1.2.6. We start with the example of the standard Poisson bracket
on R2n. Let (q1, . . . , qn, p1, . . . , pn) be coordinates on R2n. For f, g ∈ C∞(M),

{f, g} :=
n∑

i=1

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
(1.2)

defines a Poisson structure on R2n.
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Poisson structures are named after Siméon Denis Poisson who originally used
the standard Poisson bracket on R2n to construct new conserved quantities out
of existing ones in the Hamiltonian formulation of classical mechanics. Indeed,
consider the physical system described by an energy function

H : Rn × Rn → R

depending on the position q = (q1, . . . , qn) ∈ Rn and momentum p =
(p1, . . . , pn) ∈ Rn of a particle moving in Rn. Then Hamilton’s equations
of motion read {

d
dtq

i(t) = ∂H
∂pi

(q(t), p(t))
d
dtpi(t) = − ∂H

∂qi (q(t), p(t))
.

Using the Poisson bracket (1.2), the equations of motion can be rewritten as

d

dt
(q(t), p(t)) = XH(q(t), p(t)),

where XH = {H,−} ∈ X(M) is the Hamiltonian vector field of H. Note that a
function f ∈ C∞(R2n) is conserved along the integral curves of XH if and only
if

{H, f} = 0.

Consequently, using condition a) for a Poisson structure, it follows that if
f, g ∈ C∞(M) are conserved, then so is {f, g}.

The standard Poisson bracket on R2n has the property that for every x ∈ R2n,
TxR2n is spanned by Hamiltonian vector fields. In general this is not the case,
but the set of Hamiltonian vector fields generate a singular foliation, by means
of a Lie algebroid canonically associated to a Poisson structure.

Let M be a manifold, and {−,−} a Poisson structure on M . As {−,−} is a
derivation of the pointwise product in each entry, there exists a unique bivector
field π ∈ Γ(∧2TM) such that for all f, g ∈ C∞(M), we have the equality

{f, g} = π(df, dg). (1.3)

Note that this does not make use of condition a) in Definition 1.2.5. To encode
this condition in terms of π, we need an algebraic structure on the set of
multivector fields, which was introduced by in [Sch40].

Definition/Lemma 1.2.7. Let M be a smooth manifold. Let X•(M) :=
Γ(∧•TM). There are R-bilinear operations

[−,−]SN : Xk+1(M) × Xl+1(M) → Xk+l+1(M),
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called the Schouten-Nijenhuis bracket of multivector fields, uniquely determined
by the conditions that for f ∈ C∞(M), X,Y ∈ X(M), Λ1 ∈ Xk+1(M), Λ2 ∈
Xl+1(M), we have

[X, f ]SN = X(f),

[X,Y ]SN = [X,Y ],

[Λ1, X ∧ Λ2]SN = [Λ1, X]SN ∧ Λ2 + (−1)kX ∧ [Λ1,Λ2]SN

[Λ1,Λ2]SN = −(−1)kl[Λ2,Λ1]SN .

Here, the bracket in the second equality is the Lie bracket of vector fields.
For Λ1 ∈ Xk1+1(M),Λ2 ∈ Xk2+1(M),Λ3 ∈ Xk3+1(M), the Schouten-Nijenhuis
bracket satisfies

[[Λ1,Λ2]SN ,Λ3]SN = [Λ1, [Λ2,Λ3]SN ]SN − (−1)k1k2 [Λ2, [Λ1,Λ3]SN ]SN .

Using the Schouten-Nijenhuis bracket, the Jacobi identity for a Poisson structure
{−,−} can be encoded in the bivector field π as follows:

Lemma 1.2.8 ([Lic77]). Let π ∈ X2(M), and let {−,−} be defined as in (1.3).
Then {−,−} satisfies the Jacobi identity if and only if [π, π]SN = 0. In this
case π is called a Poisson bivector field.

A Poisosn bivector field π ∈ X2(M) now naturally induces a Lie algebroid
structure on T ∗M : according to the text after Definition/Lemma 1.2.4 it
is sufficient to give to give a square zero derivation on the graded algebra
Γ(∧•TM) = X•(M).

Lemma 1.2.9. Let π be a Poisson bivector field. Then

[π,−]SN : X•(M) → X•+1(M)

is a degree 1 square-zero derivation on the algebra of multivector fields.
Consequently, π equips T ∗M with a Lie algebroid structure with anchor

π# : T ∗M → TM

given by the contraction, and Lie bracket

[−,−]π : Ω1(M) × Ω1(M) → Ω1(M)

uniquely determined by

[df, dg]π = d(π(df, dg)).
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Consequently, any Poisson structure on a manifold M induces a singular foliation
on M . The leaves naturally carry closed, non-degenerate 2-forms induced by π,
making them into symplectic manifolds, but this is not relevant for this thesis.

Example 1.2.10.

- For M = R2n, the standard Poisson bracket (1.2) has associated bivector
field

π =
n∑

i=1

∂

∂pi
∧ ∂

∂qi
.

The anchor π# : T ∗M → TM induces an isomorphism of Lie algebroids,
hence the foliation only has one leaf.

- More generally, any symplectic manifold (M,ω) is also a Poisson manifold:
the inverse of the isomorphism

ω♭ : TM → T ∗M

defines a bivector field which is Poisson because dω = 0.

- On the other extreme, for any manifold M , π = 0 is a Poisson bivector.

- Let (g, [−,−]g) be a Lie algebra. Then [−,−]g induces a Poisson structure
{−,−}g on M = g∗: it is uniquely determined by the condition that for
linear functions v, w ∈ g = (g∗)∗ ⊆ C∞(g∗), we have

{v, w}g = [v, w]g.

The Lie algebroid structure on T ∗g∗ ∼= g∗×g is the Lie algebroid associated
to the coadjoint representation of g on g∗. Consequently, the orbits are
the coadjoint orbits of an integrating Lie group.

Courant algebroids

A geometric structure which is now known as the standard Courant algebroid was
first introduced in [Cou90], in order to study symplectic and Poisson geometry
in a constrained setting. In [LWX97], the general definition appeared, and it
was shown that the Drinfel’d double of a Lie bialgebroid carries a Courant
algebroid structure. This generalized the construction of the Drinfel’d double
of a Lie bialgebra in [Dd86].

Definition 1.2.11. A Courant algebroid over M is a quadruple
(E, ⟨−,−⟩, ρ, J−,−K), where
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i) E → M is a vector bundle,

ii) ⟨−,−⟩ : E ⊗ E → R is a symmetric, non-degenerate pairing,

iii) ρ : E → TM is a vector bundle map covering the identity,

iv) J−,−K : Γ(E) × Γ(E) → Γ(E) is an R-bilinear map,

such that for all x, y, z ∈ Γ(E), f ∈ C∞(M), we have

a) Jx, Jy, zKK = JJx, yK, zK + Jy, Jx, zKK,

b) ρ(Jx, yK) = [ρ(x), ρ(y)],

c) Jx, fyK = ρ(x)(f)y + fJx, yK,

d) ρ(x)⟨y, z⟩ = ⟨Jx, yK, z⟩ + ⟨y, Jx, zK⟩,

e) Jx, xK = 1
2ρ

∗(d⟨x, x⟩).

The set of conditions contains redundancies, and it was pointed out in [Uch02]
that conditions b) and c) are implied by the others.

Observe that condition b) implies that ρ(Γ(E)) ⊆ X(M) is a singular foliation.
While there are similarities between Courant algebroids and Lie algebroids,
there is also one important difference: the bracket J−,−K is not skew-symmetric,
and the symmetric part is measured by ⟨−,−⟩. We give some examples.

Example 1.2.12.

- Let M be a smooth manifold. Then TM ⊕ T ∗M carries a Courant
algebroid structure, which is the so-called standard Courant algebroid
introduced in [Cou90]. For X1, X2 ∈ X(M), ξ1, ξ2 ∈ Ω1(M), the pairing
is given by the standard pairing

⟨X1 + ξ1, X2 + ξ2⟩ = ξ2(X1) + ξ1(X2),

the anchor is given by the projection to TM , and the bracket is given by

JX1 + ξ1, X2 + ξ2K = [X1, X2] + LX1ξ2 − ιX2dξ1.

This construction can be carried out for an arbitrary Lie algebroid
(A, ρ, [−,−]A), to obtain a Courant algebroid structure on A ⊕ A∗ as
a special case of [LWX97].



PRELIMINARIES 13

- Let (g, [−,−]g) be a Lie algebra, and let ⟨−,−⟩ be an invariant non-
degenerate symmetric pairing on g (for example the Killing form if g is
semisimple). Then (g, ⟨−,−⟩, 0, [−,−]g) is a Courant algebroid over a
point {∗}. Courant algebroids over a point {∗} are also called quadratic
Lie algebras.

- Let M be a smooth manifold, let (g, ⟨−,−⟩, [−,−]g) be a quadratic Lie
algebra, and let ρ : g → X(M) be an infinitesimal action with the property
that

⟨ρ∗(α), ρ∗(β)⟩ ≡ 0,

for α, β ∈ Ω1(M). Here ⟨−,−⟩ is viewed as a pairing on g∗. Then
by [LBM08] (g ×M, ⟨−,−⟩, ρ̃, J−,−Kρ) is a Courant algebroid, where as
for the action Lie algebroid, ρ̃ is the constant extension of ρ, and for
x, y ∈ Γ(M × g)

Jx, yKρ = [x, y]ρ + ρ∗⟨dx, y⟩.

Here [−,−]ρ is the action Lie algebroid bracket, and dx ∈ Ω1(M) ⊗ g is
the differential of x, seen as a function x : M → g.

While Courant algebroids are not Lie algebroids, restricting the structure maps
to certain subbundles may yield Lie algebroids. Subbundles of maximal rank,
to which the pairing of the Courant algebroid restricts to zero are of particular
interest. In the remainder of this section, we assume that E has even rank, and
that the pairing ⟨−,−⟩ is of split signature.

Definition 1.2.13 ([Cou90]). Let (E, ⟨−,−⟩, ρ, J−,−K) be a Courant algebroid
of rank 2n with pairing of signature (n, n).

- A rank n subbundle L ⊆ E is Lagrangian if ⟨−,−⟩
∣∣
L

= 0.

- A Lagrangian subbundle L ⊆ E is a Dirac structure if

JΓ(L),Γ(L)K ⊆ Γ(L).

Dirac structures encode several geometric structures.

Example 1.2.14. Let M be a smooth manifold, and let E = TM ⊕ T ∗M be
the standard Courant algebroid.

- The graph of a bundle map A : TM → T ∗M is Lagrangian if and only if
A is skew-symmetric, i.e. A = ω♭, for ω ∈ Ω2(M). It is moreover a Dirac
structure if and only if ω is closed.
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- The graph of a bundle map A : T ∗M → TM is Lagrangian if and only if
A is skew-symmetric, i.e. A = π#, for π ∈ X2(M). It is moreover a Dirac
structure if and only if π is a Poisson bivector.

- Let D ⊆ TM be a subbundle. Then it is easy to see that D ⊕ Ann(D)
is a Lagrangian subbundle, where Ann(D) := {α ∈ T ∗M | α|D = 0}. It
is a Dirac structure if and only if Γ(D) ⊆ X(M), is closed under the Lie
bracket, which by the Frobenius theorem is equivalent to D being tangent
to a regular foliation.

Remark 1.2.15. A natural question is whether a Courant algebroid
(E, ⟨−,−⟩, ρ, J−,−K) whose pairing has split signature can be decomposed as
the direct sum of two Dirac structures E = L⊕L′. While this is can not always
be done, given a Dirac structure L ⊆ E, one can always find a complementary
Lagrangian subbundle L′.

1.2.3 L∞-algebras

L∞-algebras generalize Lie algebras by weakening the requirement of the Jacobi
identity, and were introduced in [LS93]. L∞-algebras will play two different
roles in this thesis.

- In Chapters 2 and 3, we will use certain L∞-algebras to algebraically
desingularize singular foliations, as in [LGLS20], which we explain in
Section 1.2.4.

- In Chapters 3 and 4, L∞-algebras will be used to model deformations of
geometric structures, which we explain in Section 1.2.6.

Graded linear algebra

In this section, we first give some background on graded linear algebra,
establishing notation and the various conventions that will be used in the
thesis.

Definition 1.2.16.

- A Z-graded vector space is a vector space V • with a decomposition V • =⊕
i∈Z V

i. An element x ∈ V i is called homogeneous of degree i, and its
degree is denoted by |x|.

- A map ϕ : V • =
⊕

i∈Z V
i → W • =

⊕
i∈ZW

i is of degree k if ϕ(V i) ⊆
W i+k for all i ∈ Z.
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- Let V • =
⊕

i∈Z V
i be a graded vector space. A subspace W • ⊆ V • is a

graded subspace if W =
⊕

i∈ZW ∩ V i.

Remark 1.2.17. A graded vector space V =
⊕
V i will be denoted by V • if

we want to emphasize the grading, or simply as V .

There are several ways to construct new graded vector spaces from existing
ones.

Example 1.2.18.

- Let k ∈ Z, and let V • =
⊕
V i be a graded vector space. Then V [k]• is

again a graded vector space, with V [k]i = V i+k.

- Let V • be a graded vector space, and let W • ⊆ V • be a graded subspace.
Then (V/W )• is a graded vector space with (V/W )i = V i/W i = V i/(W ∩
V i).

- Let V • be a graded vector space. Then (V ∗)• := Hom(V,R) is a graded
vector space with (V ∗)i = Hom(V −i,R).

- Let V • and W • be graded vector spaces. Then (V ⊕ W )• is a graded
vector space, with

(V ⊕W )i = V i ⊕W i.

- Let V • be a graded vector space. Then V ⊗k is a graded vector space,
with

(V ⊗k)i =
⊕

i1+···+ik=i

V i1 ⊗ · · · ⊗ V ik

- Combining the previous two examples, consider for V • a graded vector
space, the tensor algebra:

T (V ) :=
⊕
k∈Z

V ⊗k.

For i, j ≥ 0, the natural concatenation map

V ⊗i ⊗ V ⊗j → V ⊗(i+j)

extends to an algebra structure on T (V ).

- Let V • be a graded vector space. Let I±(V ) ⊆ T (V ) be the two-sided
ideal generated by elements of the form

v1 ⊗ v2 ± (−1)|v1||v2|v2 ⊗ v1
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for v1, v2 ∈ V homogeneous. Then there are two naturally associated
quotient algebras:

∧V := T (V )/I+,

S(V ) := T (V )/I−.

These quotient algebras are called the exterior algebra of V and the
symmetric algebra of V respectively.

In the last example, there is a relation between the exterior algebra and the
symmetric algebra, which is called the décalage isomorphism.

Lemma 1.2.19 (Décalage isomorphism). For every k ≥ 0, the map

Sk(V [1]) → (∧kV )[k],

v1[1] . . . vk[1] 7→ (−1)
∑k

i=1
|vi|(k−i)(v1 ∧ · · · ∧ vk)[k],

where the degree appearing in the exponent is the unshifted degree of vi, is an
isomorphism of graded vector spaces. Moreover, the isomorphism is compatible
with the multiplication, and induces an isomorphism of algebras

S(V [1]) ∼=
⊕
k≥0

(∧kV )[k].

We will use both the symmetric algebra and the exterior algebra interchangeably.

Differential graded Lie algebras

We start by defining a special case of L∞-algebras, in which there are only two
non-zero operations.

Definition 1.2.20. A differential graded Lie algebra is a triple (g, ∂, [−,−]),
where

i) g =
⊕

i∈Z g
i is a graded vector space,

ii) ∂ : g → g is a degree 1 map,

iii) [−,−] : g × g → g is a graded skew-symmetric map of degree 0,

such that
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a) ∂2 = 0,

b) For x, y ∈ g homogeneous, we have

∂([x, y]) = [∂(x), y] + (−1)|x|[x, ∂(y)].

c) For all x, y, z ∈ g homogeneous, we have

[[x, y], z] = [x, [y, z]] − (−1)|x||y|[y, [x, z]].

Here |x|, |y| denote the degree of x and y respectively.

We give some examples.
Example 1.2.21.

- Any Lie algebra (L, [−,−]) can be viewed as a differential graded Lie
algebra concentrated in degree 0, with ∂ = 0.

- Any cochain complex (C, ∂) can be viewed as a differential graded Lie
algebra with [−,−] = 0.

- Let
(
A =

⊕
i∈ZA

i,m
)

be a graded commutative R-algebra. This means
that (A,m) is an associative algebra, that the multiplication restricts
to a map mi,j : Ai × Aj → Ai+j , and that for a ∈ Ai, b ∈ Aj , we have
m(a, b) = (−1)ijm(b, a) (such as A = S(V ), for some graded vector space
V ).
For k ∈ Z, an R-linear map δ : A → A is a derivation of degree k, if δ is a
map of degree k, and for all a ∈ Ai, b ∈ Aj , we have

δ(m(a, b)) = m(δ(a), b) + (−1)ikm(a, δ(b)).

Let Derk
R(A) denote the set of derivations of degree k. Then

g• =
⊕
k∈Z

Derk
R(A)

is a differential graded Lie algebra, with the graded commutator bracket
[−,−], which for δ1 ∈ Deri

R(A), δ2 ∈ Derj
R(A) is defined by

[δ1, δ2] = δ1 ◦ δ2 − (−1)ijδ2 ◦ δ1.

If d : A → A is a derivation of degree 1 such that d2 = 0, then

(Der•
R(A), [d,−], [−,−])

is a differential graded Lie algebra.

- Let M be a smooth manifold. Then (g• = X•+1(M), 0, [−,−]SN ) is a
differential graded Lie algebra with ∂ = 0.
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L∞-algebras

We now give the general definition of an L∞-algebra.

Definition 1.2.22. An L∞-algebra is a pair (g, {ℓk}k≥1), where

- g =
⊕

i∈Z g
i is a graded vector space,

- ℓk : Sk(g[1]) → g[1] are degree 1 linear maps called (multi)brackets,

such that for n ≥ 1, we have
n∑

i=1

∑
σ∈Sh(i, n − i)

ϵ(σ)ℓn−i+1(ℓi(xσ(1), xσ(2), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0.

(1.4)
Here ϵ(σ) is determined by the equation

ϵ(σ)xσ(1) . . . xσ(n) = x1 . . . xn

in Sn(g[1]), and Sh(i, n − i) denotes the set of (i, n − i) shuffles, which are
permutations of {1, . . . , n} such that σ(1) < · · · < σ(i) and σ(i+1) < · · · < σ(n).

Equivalently, we say that g[1] is an L∞[1]-algebra (see also [MZ12]).

Remark 1.2.23. By Lemma 1.2.19, we could equivalently define the L∞-
algebras using skew-symmetric brackets. If we write µk : ∧kg[k] → g[1], then
after applying degree shifts, we obtain maps µk : ∧kg → g of degree 2 − k.
Equation (1.4) is then equivalent to

n∑
i=1

∑
σ∈Sh(i,n−i)

ϵi,σϵ(σ)µn−i+1(µi(xσ(1), xσ(2), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0,

where ϵi,σ = (−1)i(n−i+1) · sgn(σ).

Example 1.2.24.

- If ℓk ≡ 0 for k ≥ 3, then the conditions (1.4) are equivalent to the
conditions for (g, ℓ1, ℓ2) to be a differential graded Lie algebra, after
applying the décalage isomorphism

S2(g[1]) ∼= (∧2g)[2].

- If g =
⊕0

i=−n+1, for degree reasons we necessarily have ℓk ≡ 0 for k > n+1.
In this case (g, {ℓk}1≤k≤n+1) is called a Lie n-algebra.



PRELIMINARIES 19

- Let (E, ⟨−,−⟩, ρ, J−,−K) be a Courant algebroid. Then there is a naturally
associated L∞-algebra, with g concentrated in degrees 0 and −1 described
in [RW98]. Here, g0 = E, and g−1 = C∞(M). The multibrackets can be
found in [RW98, Theorem 4.3].

In the next subsection we will encounter more examples, coming from singular
foliations.

1.2.4 L∞-algebroids

As discussed in Section 1.2.2, Lie algebroids induce singular foliations. However,
the converse does not hold in general, see [AZ13, Lemma 1.3]. Moreover, even
if the singular foliation F is induced by a Lie algebroid (A, ρ, [−,−]A), the
Lie algebroid is not unique: for any Lie algebra g with Lie bracket [−,−]g
(A⊕ g×M,ρ⊕ 0, [−,−]A ⊕ [−,−]g) is a Lie algebroid with underlying foliation
F , where the bracket [−,−]g is extended fiberwise.

This question was addressed in [LGLS20], where the authors associate a higher
Lie algebroid to a class of singular foliations. In many cases, the higher Lie
algebroid is a Lie n-algebroid, which is in particular an L∞-algebra concentrated
in finitely many non-positive degrees:

Definition 1.2.25 ([Vor10]). Let M be a smooth manifold. Let n ≥ 1. A Lie
n-algebroid over M is a triple (E, ρ, {ℓk}1≤k≤n), where

i) E =
⊕n

i=1 Ei[i− 1] → M is a graded vector bundle,

ii) ρ : E1 → TM is a vector bundle map covering the identity,

iii) ℓk : Γ(Sk(E[1])) → Γ(E[1]) are R-linear maps (C∞(M)-linear for k ̸= 2)
of degree 1,

such that for all f ∈ C∞(M), x, y ∈ Γ(E),

a)
ρ ◦ ℓ1 = 0,

viewed as vector bundle maps E2 → TM .

b)
ℓ2(x, fy) = ρ(x)(f)y + fℓ2(x, y),

where ρ(x) is understood to be ρ ◦ prE1 .
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c) For all k ≥ 1,

k∑
i=1

∑
σ∈Sh(i,k−i)

ϵ(σ)ℓk−i+1(ℓi(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(k)) = 0.

The definition encompasses several known objects.

Example 1.2.26.

- A Lie 1-algebroid is equivalent to a Lie algebroid.

- A Lie n-algebroid for which ℓk ≡ 0 for k > 1 is a cochain complex of
vector bundles concentrated in degrees −n+ 1, . . . , 0.

- A Lie n-algebroid for which ℓk ≡ 0 for k ≥ 3, is a differential graded Lie
algebroid.

- Let (C, ⟨−,−⟩, ρ, J−,−K) be a Courant algebroid over M . Then there is a
Lie 2-algebroid associated to C: in this case, E1 = C, E2 = T ∗M , and
the multibrackets can be found in [JL19]. This Lie 2-algebroid is not
canonically associated to C: it depends on a choice of connection on E,
compatible with ⟨−,−⟩.

We now discuss a class of L∞-algebroids, which can be associated to a singular
foliation.

Universal L∞-algebroids

In [LGLS20, Theorem 2.4], the authors show for a class of singular foliations F
that over relatively compact subsets of M , F is induced by a Lie n-algebroid,
for which the underlying cochain complex is a projective resolution of F ,
algebraically desingularizing F . Roughly, their procedure consists of two non-
constructive steps:

1) Given the singular foliation F , find a resolution

(Γ(E•), ∂) ρ→ F → 0,

of F by sections of vector bundles Ei → M ,

2) Lift the Lie bracket on F to an L∞-algebroid structure (ρ, {ℓk}k≥1). on
(Γ(E•), ∂) such that ∂ = ℓ1.
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We recall the precise definitions.

Definition 1.2.27 ([LGLS20]). Let F be a singular foliation. A geometric
resolution of F is a triple

(
E =

⊕
i≥1 Ei[i], ∂, ρ

)
, where

i) E =
⊕

i≥1 Ei[i] is a graded vector bundle,

ii) ∂ : E → E is a vector bundle map of degree 1,

iii) ρ : E1 → TM is a vector bundle map,

such that the sequence

. . . Γ(En) . . . Γ(E1) F 0∂ ∂ ∂ ρ

is exact.

It is often convenient for the resolution to have finite length, i.e. Ek = 0 for
k ≥ n, for some n ≥ 0. The following result gives a criterion for the existence
of a finite length geometric resolution.

Proposition 1.2.28 ([LGLS20]). Let F be a singular foliation on an n-
dimensional manifold M such that for any p ∈ M , there exist coordinates
(x1, . . . , xn) around p on a neighborhood U , such that Fp is generated by analytic
vector fields in the coordinates (x1, . . . , xn). Then there exists a geometric
resolution of F concentrated in degrees −1, . . . ,−n over every relatively compact
subset of M .

The following result shows that the existence of a geometric resolution is
sufficient for the existence of a L∞-algebroid inducing the foliation.

Theorem 1.2.29 ([LGLS20]). Let F be a singular foliation on M , and let
(E, ∂, ρ) be a geometric resolution of F . Then there exists an L∞-algebroid
structure (ρ, {ℓk}k≥1) on E, such that ℓ1 = ∂. Moreover, it is universal: for
every other L∞-algebroid (E′, ρ′, {ℓ′

k}k≥1) such that ρ′(Γ(E′
1)) ⊆ F there exists

a morphism of L∞-algebroids E′ ⇝ E, which is unique up to homotopy3.

In particular, for singular foliations which locally admit analytic generators, the
universal L∞-algebroid can be chosen to be a Lie n-algebroid. Several examples
of universal Lie n-algebroids appear in Chapter 2.

3Morphisms of L∞-algebroids and a homotopy of morphisms contain more data than
cochain maps E′ → E and a cochain homotopy between them. As the exact definitions are
not relevant for the thesis, we omit them (see [LGLS20])
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Let F be a singular foliation. Using a universal L∞-algebroid, the authors
associate to any point p ∈ M , the isotropy L∞-algebra of F at p, which contains
the isotropy Lie algebra of F at p.
Definition/Lemma 1.2.30 ([LGLS20]). Let F be a singular foliation, and
(E, ρ, {ℓk}k≥1) a universal L∞-algebroid. Let p ∈ M . Then the structure maps
ℓk descend to cohomology H•(E, p) of the complex

. . . (En)p . . . (E2)p ker(ρp) 0∂p ∂p ∂p ∂p
.

H•(E, p) therefore inherits a L∞-algebra structure, which, up to isomorphism
does not depend on the choice of E. Moreover, H−1(E, p) := ker(ρp)/im(∂p :
(E2)p → (E1)p)) is canonically isomorphic to the isotropy Lie algebra of F at p.
The L∞-algebra structure on⊕

i≥1
H−i(E, p)[i− 1]

is called the isotropy L∞-algebra of F at p.

In particular, the binary operation ℓ2 defines a representation of H−1(E, p) on
H−i(E, p), for i ≥ 1. For i = 1, this is the adjoint representation.

1.2.5 Graded geometry

In this subsection we discuss graded geometry. Graded geometry provides a
unified framework to describe Lie algebroids, Lie n-algebroids and Courant
algebroids among other things. For an elaborate introduction, see for instance
[CS11]. Graded geometry is a framework where, in addition to a commutative
algebra of smooth functions, we allow functions that anti-commute. Such objects
first appeared in physics, where anti-commuting variables were used to describe
fermions.
Definition 1.2.31. A non-negatively graded manifold (M, C∞

M) with base M
is a manifold M equipped with a sheaf of graded commutative algebras which
locally trivialize as

C∞
M|U ∼= Γ(S((E[1])∗))

∣∣
U
,

where E is a Z≤0-graded vector bundle (hence, (E[1])∗ is a Z≥1 graded vector
bundle). The sheaf of algebras C∞

M will be referred to as the sheaf of functions
on M.
Remark 1.2.32. While S((E[1])∗) is an infinite-dimensional vector bundle, it
is degreewise finite-dimensional. A section s : M → S((E[1])∗) is considered
smooth if s is a finite sum of homogeneous smooth sections.
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Example 1.2.33. Let M be a smooth manifold.

- Any vector bundle A of rank n over M gives rise to a graded manifold
over M , denoted by A[1], with functions

C∞(E[1]) = Γ(S((A[1])∗)) ∼= Γ

 n⊕
k=0

∧kA∗[−k]

 .

In particular, T [1]M := TM [1] is a graded manifold, with

C∞(T [1]M) = Ω•(M),

the algebra of differential forms of M .

- More generally, any non-positively graded vector bundle E over M gives
rise to a graded manifold denoted E[1], with functions

C∞(E[1]) = Γ(S((E[1])∗)),

It can be shown that any non-negatively graded manifold is of this form
[BP13].

In practice, we are interested in the case where the algebra of functions carries
a differential, making it into a differential graded commutative algebra.

Definition 1.2.34. Let (M, C∞
M) be graded manifold. The vector fields on M

are given by
X(M) := DerR(C∞

M),

the graded derivations of the algebra of functions. Note that the graded
commutator turns X(M) into a graded Lie algebra. A vector field Q of degree
1 is cohomological if Q2 = 1

2 [Q,Q] = 0.

The choice of a cohomological vector field induces a differential on the graded
algebra of functions of a graded manifold.

Definition 1.2.35. A differential graded manifold (M, C∞
M, Q) is a graded

manifold (M, C∞
M) equipped with a cohomological vector field Q ∈ X1(M).

We list some examples of differential graded manifolds.

Example 1.2.36.
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- Let A be a vector bundle. On the graded manifold A[1], any Lie algebroid
structure gives rise to a cohomological vector field. Conversely, by [Vai97],
the data of a cohomological vector field is equivalent to the data of a
Lie algebroid structure. The vector field is precisely the differential of
Definition/Lemma 1.2.4.

- Let (E, ⟨−,−⟩) be a vector bundle over M with non-degenerate symmetric
pairing ⟨−,−⟩. It was shown in [Roy02] that associated to this data, there
is a graded manifold (non-canonically) isomorphic to E[1] ⊕ T ∗M [2]. The
graded algebra of functions carries a degree −2 Poisson bracket, and a
cohomological vector field which is moreover a derivation of this Poisson
bracket is equivalent to a Courant algebroid structure.

- Let n ≥ 0. Let E be a graded vector bundle concentrated in degrees
−n+ 1, . . . , 0. Then the data of a cohomological vector field on E[1] is
equivalent to a Lie n-algebroid structure on E [Vor10].

1.2.6 Deformations and stability

Deformation theory is the study of how properties change when considering
a family of objects. The modern approach to deformation theory originates
from the works of Kunihiko Kodaira and Donald Spencer on the deformations
of complex manifolds [KS58], see for instance [Man22] for more details on the
history.

As hinted in Section 1.2.3, the main tool to study deformation theory is L∞-
algebras. This idea follows the principle of Pierre Deligne, which was postulated
in a letter written to John Millson [Del86]. Roughly, the principle states that
every deformation problem is governed by a differential graded Lie algebra,
with quasi-isomorphic differential graded Lie algebras describing equivalent
deformation problems. More precisely, solutions to deformation problems
correspond to certain elements in a differential graded Lie algebra or L∞-algebra,
which are so-called Maurer-Cartan elements. Moreover, under some conditions,
there is a notion of equivalence called gauge equivalence on the Maurer-Cartan
elements, which often corresponds to equivalences of solutions. While the notion
of a deformation problem has been formalized, and the principle of Deligne has
been made into a theorem in [Pri10, Lur10], we will mainly be interested in
deformation problems in which solutions to the deformation problem carry an
intrinsic topology, which will be clear from the context. As such, we will use
this intrinsic topology to define deformations, and our constructions will be
motivated by examples.
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We first discuss the key ideas for differential graded Lie algebras, and then
indicate the changes that need to be made for L∞-algebras.

Deformation theory and differential graded Lie algebras

We discuss the notions necessary to do study deformations using differential
graded Lie algebras. As mentioned earlier, we are interested in certain elements
of differential graded Lie algebras.

Definition 1.2.37. Let (g, ∂, [−,−]) be a differential graded Lie algebra. Then
Q ∈ g1 is a Maurer-Cartan element if

∂(Q) + 1
2 [Q,Q] = 0. (1.5)

Maurer-Cartan elements can be used to modify the differential ∂, giving rise to
a new differential graded Lie algebra structure on g:

Lemma 1.2.38. Let (g, ∂, [−,−]) be a differential graded Lie algebra, and let
Q ∈ g1 be a Maurer-Cartan element. Then (g, ∂+[Q,−], [−,−]) is a differential
graded Lie algebra.

We compute the Maurer-Cartan elements of the differential graded Lie algebras
discussed in Example 1.2.21.

Example 1.2.39.

- For a graded Lie algebra concentrated in degree 0, there are no Maurer-
Cartan elements, as there are no elements of degree 1.

- For a cochain complex (C, ∂), Maurer-Cartan elements are 1-cocycles.

- Let (A =
⊕

i∈ZA
i,m) be a graded commutative R-algebra. Then δ ∈

Der1
R(A) is a Maurer-Cartan element if and only if δ2 = 0. Note that

for A = S(E∗[−1]) for some non-positively graded vector bundle E over
a manifold M , such δ encode Lie n-algebroid structures (see Example
1.2.36).

- For g• = X•+1(M), π ∈ g1 = X2(M) is Maurer-Cartan if and only if
[π, π]SN = 0, which is equivalent to π being a Poisson bivector field.

Often, solutions to deformation problems carry a natural notion of equivalence.
To encode this equivalence, we need the notion of differentiable paths in g1. In
applications, g1 will be the sections of some finite-dimensional vector bundle
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over M , so there is no problem. In more generality, the technical details for
differential graded Lie algebras are listed in Assumptions 3.3.17. For simplicity,
we do not elaborate on the details here.

Let (g, ∂, [−,−]) be a differential graded Lie algebra. The equivalences of
Maurer-Cartan elements are induced by an “action” of g0, which is an ordinary
Lie algebra.

Definition 1.2.40. Let (g, ∂, [−,−]) be a differential graded Lie algebra. Let
X ∈ g0, and Q ∈ g1. We define QX as the time 1 solution of

d

dt
Qt = ∂X − [X,Qt]. (1.6)

This is called the gauge action of X on Q.

Remark 1.2.41. One way to interpret this action is as follows, see for instance
[Man22, Section 6.3]. Out of a differential graded Lie algebra (g, ∂, [−,−])
one can construct a new graded Lie algebra (g ⊕ R∂[−1], 0, [−,−]′), such that
[∂, x]′ = ∂(x) for any x ∈ g and [∂, ∂]′ = 0. Then the gauge action can be
interpreted as the integration of the infinitesimal action of g0 on the affine
subspace {(x, ∂) | x ∈ g1} ⊆ g1 ⊕ R∂[−1].

We check what gauge equivalence corresponds to in the differential graded Lie
algebras of 1.2.21.

Example 1.2.42.

- As for ordinary Lie algebras, there are no degree 1 elements, the action is
trivial.

- In a cochain complex (C, ∂), for c ∈ C1, b ∈ C0, we have cb = c+ ∂b, so
two cocycles are equivalent if they differ by a coboundary.

- Let (A =
⊕

i∈ZA
i,m) be a graded commutative R-algebra. Then for

δ ∈ Der1
R(A), X ∈ Der0

R, we have δX = exp(X)δ exp(−X). Here exp(X)
should be understood as integrating the infinitesimal automorphism of A
associated to X. When A = Γ(S(E∗[−1])) for some non-positively graded
vector bundle E over a manifold M , this corresponds to integrating an
infinitesimal automorphism of E.

- In g• = X•+1(M), for π ∈ X2(M), X ∈ X(M), we have πX = (ϕX
−1)∗π,

where ϕX
−1 is the flow of X at time −1.

Above, we saw that some structures, including Lie (n-)algebroid structures
and Poisson structures, which can be described as Maurer-Cartan elements
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in some differential graded Lie algebras, with isotopies corresponding to the
gauge equivalence. For some structures, the algebraic structure encoding its
deformations is not a differential graded Lie algebra, but an L∞-algebra. The
main example is that of Dirac structures, which we discuss in detail in Section
4.4.3.

Deformation theory and L∞-algebras

In this section we generalize the definitions of Maurer-Cartan elements and
gauge equivalence to L∞-algebras. To avoid convergence issues, we assume that
the L∞-algebras have a finite amount of brackets. We choose to work with
L∞[1]-algebras. Because of the degree shift, Maurer-Cartan elements live in
degree 0.

Definition 1.2.43. Let (g, {ℓk}1≤k≤n) be an L∞[1]-algebra. An element Q ∈ g0

is Maurer-Cartan if
n∑

k=1

1
k!ℓk(Q, . . . , Q) = 0.

The analogue of Lemma 1.2.38 holds, and the structure maps of an L∞[1]-
algebra can be twisted to obtain a new L∞[1]-algebra. The proof can be found
in for instance [Dol].

Lemma 1.2.44. Let (g, {ℓk}1≤k≤n) be an L∞[1]-algebra, and let Q ∈ g0. Define

ℓQ
k :=

∞∑
i=1

1
i!ℓi+k(Q, . . . , Q︸ ︷︷ ︸

k times

,−, . . . ,−), (1.7)

where we note that the sum is finite. If Q is Maurer-Cartan, then (g, {ℓQ
k }1≤k≤n)

is an L∞[1]-algebra.

Using the formula for the twisted brackets, the equation for the gauge action
can be written down concisely:

Definition 1.2.45. Let (g, {ℓk}1≤k≤n) be an L∞[1]-algebra. Let X ∈ g−1, and
Q ∈ g0. We define QX as the time 1 solution of

d

dt
Qt = ℓQt

1 (X).

Remark 1.2.46. Observe that although L∞-algebroids can be viewed as L∞[1]-
algebras, they do not contain elements of degree 0, hence there are no non-trivial
Maurer-Cartan elements.
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Rigidity and stability

An important question in deformation theory is to determine conditions for
an object Q0 to be rigid, which means that every object Q near Q0 of the
same kind is equivalent to Q0. The framework of differential graded Lie
algebras allows to make this question concrete, using Maurer-Cartan elements
to parametrize structures, and the gauge equivalence to capture equivalences.
In ideal circumstances, rigidity should be implied by so-called infinitesimal
rigidity.

Definition 1.2.47. Let (g, ∂, [−,−]) be a differential graded Lie algebra. Let
Q ∈ g1 be a Maurer-Cartan element. Then Q is infinitesimally rigid if

H1(g, ∂ + [Q,−]) = 0. (1.8)

To explain this definition, we observe that rigidity of a Maurer-Cartan element
Q0 ∈ g1 is equivalent to the map

Φ : g0 → g1, X 7→ QX
0

being surjective onto an open neighborhood of Q0 in the space of Maurer-Cartan
structures. We claim that at the linear level, surjectivity is equivalent to (1.8).

Heuristically, the tangent space to the set of Maurer-Cartan elements should be
the space of 1-cocycles in (g, ∂ + [Q,−]), obtained by linearizing the Maurer-
Cartan equation. At the level of tangent spaces, the map Φ then maps X ∈ g0,
to

d

dt

∣∣∣∣
t=0

QtX
0 = d

dt

∣∣∣∣
t=0

Qt = ∂X − [X,Q0] = (∂ + [Q0,−])(X),

where Qt is the path associated to the gauge action of X on Q0, proving the
claim.

In the reasoning above, we made a lot of simplifications, and a number of things
can go wrong:

- The set of Maurer-Cartan elements is generally not a smooth manifold,

- g1 is generally infinite-dimensional.

This suggests that the implication

infinitesimal rigidity =⇒ rigidity

does not always hold. Nevertheless, we list a few cases in which this implication
holds.
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- Deformations of associative algebras [Ger64],

- Deformations of finite-dimensional Lie algebras [NR67],

- Under some additional assumptions, semilocal rigidity results for Poisson
manifolds were obtained in [Măr14], extending local rigidity results in
[MZ04].

Instead of rigidity, we can also consider stability. Given an object Q0 with a
property P , the property P is said to be stable if every Q near Q0 has the
property P up to equivalence. In terms of the differential graded Lie algebra
(g, ∂, [−,−]) and Maurer-Cartan element Q0, this means that we are interested
in when the map

ΦP : g0 × hP → g1, (X,Q) 7→ (Q0 +Q)X

is surjective onto a open neighborhood of Q0 in the space of Maurer-Cartan
elements. Here hP := {Q ∈ g1 | Q+Q0 is Maurer-Cartan and has property P}.
Note that for hP = 0 we recover the rigidity problem. In this thesis, we are
concerned with the case where hP is the set of Maurer-Cartan elements of a
differential graded Lie subalgebra h ⊆ g.

Linearizing, it can be shown that infinitesimal surjectivity of ΦP is equivalent
to the map

H1(h, ∂ + [Q0,−]) → H1(g, ∂ + [Q0,−]) (1.9)
induced by the inclusion h ↪→ g being surjective. In many cases, hP is the set of
Maurer-Cartan elements of a differential graded Lie subalgebra h. The question
can then be reformulated as follows:

Let (g, ∂, [−,−]) be a differential graded Lie algebra, and let h ⊆ g be a differential
graded Lie subalgebra. Let Q0 ∈ h1 be a Maurer-Cartan element. When is every
Maurer-Cartan element of g near Q0 related to an element in h1 by the gauge
action?

Example 1.2.48. The motivating example for this question is the stability
of leaves of Poisson/Lie algebroid structures as in [CF10]. A leaf L ⊆ M of
a Lie algebroid (A, ρ, [−,−]) over a manifold is stable if nearby Lie algebroid
structures (ρ′, [−,−]′) have a leaf diffeomorphic to L. In [CF10], the authors give
a sufficient condition cohomological condition for the stability of a compact leaf.
For zero-dimensional leaves, this condition is the vanishing of the cohomology
group

H1
CE(Ap, TpM),

the first Lie algebra cohomology group of Ap with values in TpM . In Section
3.3.2, we show that for a zero-dimensional leaf {p}, stability is in fact an instance
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of the question above. In this case, g = DerR(Γ(∧•A∗)), and the property whose
stability we investigate is that {p} is a leaf. Hence, as differential graded Lie
subalgebra, we set for k ≥ 0

hk := {δ ∈ Derk
R(Γ(∧•A∗)) | δ(C∞(M)) ⊆ IpΓ(∧kA∗)}.

The subspace h =
⊕

k≥−1 h
k is closed under the graded commutator bracket,

so it defines a differential graded Lie subalgebra of (g, 0, [−,−]), and its Maurer-
Cartan elements are Lie algebroid structures on A for which {p} is a leaf. In
these terms, the cohomological obstruction is isomorphic to

H1(g/h, ∂ + [Q,−]), (1.10)

the cohomology of the quotient complex. Observe that by the long exact
sequence in cohomology associated to the short exact sequence of complexes,

0 h g g/h 0,

the vanishing of (1.10) implies the surjectivity of (1.9).

Remark 1.2.49. For a deformation problem that is encoded by an L∞[1]-
algebra (g, {ℓk}1≤k≤n), the analogous observations can be made. The difference
is now that the infinitesimal condition for rigidity of a Maurer-Cartan element
Q ∈ g0 is

H0(g, ℓQ
1 ) = 0,

where ℓQ
1 is defined as in (1.7). Note that the use of the zeroth cohomology is

solely due to the degree shift in L∞[1]-algebras.
For stability, we will consider properties that can be encoded in L∞[1]-
subalgebras h ⊆ g, and the infinitesimal stability condition for Q ∈ h0 is
then the surjectivity of the map

H1(h, ℓQ
1 ) → H1(g, ℓQ

1 ).

1.3 Outline of the chapters

We give an outline of the chapters.

1.3.1 Chapter 2

The second chapter is the article “On the universal L∞-algebroid of linear
foliations”, and is available on the arXiv with identifier arXiv:2207.03278, and
will appear in the Journal of Lie Theory.

https://arxiv.org/abs/2207.03278
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1.3.1.1 Main results

This chapter consists of two parts. In the first part, consisting of Sections 2.2
and 2.3, we compute several new examples of universal L∞-algebroids as in
[LGLS20]. More precisely, in Section 2.2, we construct a universal L∞-algebroid
for several singular foliations induced by linear Lie algebra actions on a vector
space V , by explicitly constructing projective resolutions of the C∞

V -module
underlying the singular foliation, and then defining an L∞-algebroid structure
on the space of sections. The Lie algebras we consider are:

- gl(V,W ) for a subspace W ⊆ V , which consists of endomorphisms of V
that preserve W , in which case we obtain a Lie n-algebroid with only a
unary and binary bracket.

- sl(V ), which consists of traceless endomorphisms of V , in which case we
again obtain a Lie n-algebroid with only a unary and binary bracket.

- sp(V, ω) for a non-degenerate ω ∈ ∧2V ∗, which consists of endomorphisms
of V that preserve ω. In this case only the partial L∞-algebroid structure
is found, and we show that there is a non-zero ternary bracket.

In Section 2.3, we consider foliations on vector bundles for which the zero section
L is a leaf, and the transverse foliation on the fibers is given by one of the Lie
algebras above. These foliations generalize the ones above: they are generated
by vector fields whose flow is a vector bundle automorphism. Moreover, the
flow of the generating vector fields preserve a subbundle, a fiberwise volume
form and a fiberwise symplectic form respectively.

In the second part, which is Section 2.4, we give a constructive way to compute
some of the invariants defined in [LGLS20]. More specifically, given a foliation
F on a manifold M and a zero-dimensional leaf p ∈ M , we show that the graded
vector space underlying the isotropy L∞-algebra of F at p can be computed
directly from F . Moreover, for linear foliations, we show that the representation
of the isotropy Lie algebra of F in p on the (Ei)p can also directly be computed
from the foliation.

1.3.2 Chapter 3

The third chapter is the article “Stability of fixed points in Poisson geometry and
higher Lie theory”, and is available on the arXiv with identifier arXiv:2210.16256.

https://arxiv.org/abs/2210.16256
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1.3.2.1 Main results

In this chapter, we discuss various aspects of the stability of fixed points under
deformations of various structures. The question of stability of fixed points
can be phrased as follows: given a geometric structure on a manifold M which
induces a singular foliation on M , and a fixed point p ∈ M , when do all nearby
geometric structures of the same type have a fixed point q ∈ M near p? This
is a special case of stability of leaves, as discussed in [CF10] for Lie algebroids
and Poisson manifolds.

The article consists of three parts. In the first part, which goes up to and
including Section 3.3.2, we give a proof of the stability result of [CF10, DW06]
for fixed points of Lie algebroids, directly in terms of Lie algebroid data, while
existing proofs used an identification of Lie algebroid structures with certain
Poisson structures on the dual vector bundle. We then show that the both
the problem of stability of fixed points and the condition to ensure a positive
answer to the stability question can be formulated entirely in terms of the
differential graded Lie algebra governing the deformations of Lie algebroid
structures, serving as motivation for the main theorem of the article.

In the second part, which is Section 3.3, we state and prove the main theorem
of the article (Theorem 3.3.20), which is an algebraic result about differential
graded Lie algebras. We state a simplified version here, omitting technical
assumptions.
Theorem. Let (g, ∂, [−,−]) be a differential graded Lie algebra, and let h ⊆ g
be a differential graded Lie subalgebra of finite codimension. Let Q ∈ h1 be a
Maurer-Cartan element, and assume that

H1(g/h, ∂ + [Q,−]) = 0.

Then for any Maurer-Cartan element Q′ ∈ g1 close enough to Q, there exists a
smooth family I ⊆ g0, parametrized by an open neighborhood of

ker(∂ + [Q,−] : g0/h0 → g1/h1),

such that for any X ∈ I, we have (Q′)X ∈ h1.

The theorem therefore provides a sufficient condition for a positive answer to
the stability question above Example 1.2.48.

In the third part, which is the remainder of the article, we give several
applications of the main theorem, recovering in particular the known stability
results for fixed points of Poisson structures and Lie algebroids ([CF10, DW06]),
as well as the results for higher order fixed points of Poisson structures and Lie
algebroids as in [DW06].
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We then obtain new stability results for (higher order) fixed points of various
geometric structures:

- Lie n-algebroids,

- Singular foliations, including a formal rigidity result,

- Lie bialgebroids,

- Poisson-Nijenhuis structures (including holomorphic Poisson structures),

- Courant algebroids,

- Dirac structures in a Courant algebroid of split signature that admit a
complentary Dirac structure.

1.3.3 Chapter 4

The fourth chapter is the article “Stability of fixed points of Dirac structures”,
which is joint work with Marco Zambon, and is available on the arXiv with
identifier arXiv:2304.12103.

1.3.3.1 Main results

This article consists of two parts. In the first part, up until and including Section
4.3, we generalize Theorem 3.3.20 as formulated in Section 1.3.2, to L∞-algebras
with a finite number of brackets, and an L∞-subalgebra of degreewise finite
codimension (Theorem 4.3.1). We state a simplified version here, omitting
technical assumptions.

Theorem. Let (g, {ℓk}1≤k≤n) be an L∞[1]-algebra, and let h ⊆ g be an L∞[1]-
subalgebra of degreewise finite codimension. Let Q ∈ h0 be a Maurer-Cartan
element. Assume that

H1(g/h, ℓQ
1 ) = 0.

Then for any Maurer-Cartan element Q′ ∈ g1 close enough to Q, there exists a
smooth family I ⊆ g−1, parametrized by an open neighborhood of

ker(ℓQ
1 : g−1/h−1 → g0/h0),

such that for any X ∈ I, we have (Q′)X ∈ h1.

https://arxiv.org/abs/2304.12103
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This generalization is a natural improvement to 3.3.20, as the algebraic structure
governing deformations of a geometric structure is often not a differential graded
Lie algebra, but an L∞-algebra. This can for instance be seen in the theory of
deformations of Dirac structures [FZ15], regular foliations [Vit14], coisotropic
submanifolds in Poisson geometry [OP05].

In the second part, which is the remainder of the article, we give an application
to fixed points of Dirac structures to obtain Theorem 4.6.7, which improves
Theorem 3.5.50, as it does not require the existence of a Dirac complement, and
can be applied after simply picking a Lagrangian complement.

Theorem. Let (E, ⟨−,−⟩, ρ, J−,−K) be a Courant algebroid over M with split
signature pairing. Let A ⊆ E be a Dirac structure such that p ∈ M is a zero-
dimensional leaf, i.e. ρ(Ap) = 0. Let g = Ap be the isotropy Lie algebra at p,
and consider h := ker(ρp : Ep → TpM)⊥ ⊆ Ap, where ⊥ is taken with respect to
⟨−,−⟩. Assume that

H2(∧•g∗

∧•h◦ , dg) = 0.

Then any Dirac structure near A has a smooth family of zero-dimensional leaves,
locally parametrized by

ker
(
dA : g

∗

h◦ → ∧2g∗

∧2h◦

)
.
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Chapter 2

On the universal L∞-algebroid
of a linear foliation

This chapter contains the article [Sin22].

Abstract - We compute an L∞-algebroid structure on a projective resolution
of some classes of singular foliations on a vector space V induced by the linear
action of some Lie subalgebras of gl(V ). This L∞-algebroid provides invariants
of the singular foliations, and also provides a constant-rank replacement of the
singular foliation. The computation consists of first constructing a projective
resolution of the foliation induced by the linear action of the Lie subalgebra
g ⊆ gl(V ), and then computing the L∞-algebroid structure. We then generalize
these constructions to a vector bundle E, where the role of the origin is now
taken by the zero section L.

We then show that the fibers over a fixed point of a projective resolution of any
singular foliation can be computed directly from the foliation, without needing
the projective resolution. For linear foliations, we also provide a way to compute
the action of the isotropy Lie algebra in the origin on these fibers directly from
the foliation.

2.1 Introduction

Let M be a smooth manifold, equipped with a singular foliation F . By singular
foliation, we mean a subsheaf F of the sheaf of vector fields X on M such that

39
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a) for all U ⊆ M open, F(U) is a C∞(U)-submodule of X(U),

b) for all U ⊆ M open and X,Y ∈ F(U) we have [X,Y ] ∈ F(U),

c) for all x ∈ M , there exists an open subset Ux of M containing x, such
that F(Ux) is a finitely generated C∞(Ux)-module.

This definition of singular foliations was used in [Lav16, LGLS20]. An equivalent
definition, using compactly supported vector fields, appeared in [Sus73, AS09]
among other places. This equivalence was shown in [Wan17, Proposition 2.1.9],
and the construction of the sheaf out of compactly supported vector fields
appeared in [AZ16].
In [LGLS20], it was shown that under certain conditions on F one can associate
an L∞-algebroid over M to (M,F). Here an L∞-algebroid is a non-positively
graded vector bundle E =

⊕
i∈Z≤0

Ei, with a collection of multibrackets {ℓk :
Γ(∧kE) → Γ(E)}k≥1, where ℓk has degree 2 − k, and a vector bundle map
ρ : E0 → TM intertwining ℓ2 with the Lie bracket of vector fields, called the
anchor, satisfying some quadratic identities. L∞-algebroids were first defined in
[Vor10] as higher analogues of Lie algebroids. When M = {∗} is a single point,
the definition reduces to that of a non-positively graded L∞-algebra, which
appeared in [LS93] as strongly homotopy Lie algebra. For the definition and
important properties, we refer to [Lav22, Section 2.1].

The construction of [LGLS20] can be broken into two parts:

i) Choosing a resolution of F in the category of C∞
M -modules by finitely

generated projective modules1,

ii) Constructing an L∞-algebroid structure on the complex given by the
resolution.

In step i) the conditions posed on F are used. Neither of the steps is constructive,
but plenty of examples are given. Because of i), the L∞-algebroid constructed
in ii) satisfies a universality property, which implies uniqueness up to a notion
of homotopy ([LGLS20, Corollary 2.9]). It will therefore be referred to as a
universal L∞-algebroid of F . Because of the uniqueness up to homotopy, this
L∞-algebroid captures invariants of the singular foliation F . Moreover, it allows
to replace the singular foliation by a collection of constant-rank objects, which
provides a framework to extend some results from the theory of Lie algebroids
to singular foliations. Further, knowing a universal L∞-algebroid of a singular

1As we work in the smooth category, this is equivalent to choosing a resolution of F(M)
in the category of C∞(M)-modules by sections of vector bundles. We therefore do not
distinguish between the sheaf and its global sections.
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foliation allows to compute the modular class of a singular foliation as in [Lav22].

In this article, we generalize the example of the foliation F0 consisting of vector
fields vanishing in the origin given in [LGLS20]. The foliation F0 is induced
by the canonical linear gl(V )-action on V . The universal L∞-algebroid given
in [LGLS20, Example 3.99] only has two nonzero operations, turning it into
a differential graded Lie algebroid (dg-Lie algebroid): ℓk = 0 for k ≥ 3. This
raises several questions:

1) Can we construct the universal L∞-algebroids for linear actions of other
Lie algebras explicitly?

2) Can this approach be generalized to higher-dimensional leaves, with the
corresponding isotropy Lie algebra?

3) Does the universal L∞-algebroid for such a foliation always admit a dg-Lie
algebroid structure (i.e. an L∞-algebroid structure for which only the
unary and binary brackets are non-zero)?

Main results

We address the questions above in the following examples:

- The Lie subalgebra gl(V,W ) ⊆ gl(V ) for a given subspace W ⊆ V ,

- the Lie subalgebra sl(V ) ⊆ gl(V ) of traceless endomorphisms,

- the Lie subalgebra sp(V, ω) ⊆ gl(V ) of endomorphisms preserving a non-
degenerate skew-symmetric 2-form ω ∈ ∧2V ∗.

All three questions have a positive answer in the cases gl(V,W ) and sl(V ). We
answer questions 1) and 2) partially in the case of sp(V, ω), and we do not know
the answer to question 3) in this case.
The resolutions of the module F we construct are minimal at the origin, which
means that all differentials, being vector bundle maps, vanish at the origin. An
advantage of this is that two L∞-algebroid structures constructed on minimal
resolutions are not only homotopy equivalent, but actually L∞-isomorphic in a
neighborhood of the origin, as explained at the end of Section 2.2.1.
In Section 2.2 we address questions 1) and 3).

- In Section 2.2.1 we recall the construction for gl(V ), which induces the
foliation given by all vector fields vanishing in 0 ∈ V , as given in Example
3.99 of [LGLS20].



42 ON THE UNIVERSAL L∞-ALGEBROID OF A LINEAR FOLIATION

- In Section 2.2.2 we consider the case of gl(V,W ), which induces the
foliation generated by the linear vector fields tangent to the subspace W .
We give a geometric resolution and describe an L∞-algebroid structure
with only a unary and binary bracket in Proposition 2.2.4 yielding a
positive answer to question 3).

- In Section 2.2.3 we consider the case of sl(V ), which induces the foliation
generated by linear vector fields preserving a constant volume form on
V . We compute a geometric resolution in Proposition 2.2.6, and describe
an L∞-algebroid structure with only a unary and binary bracket in
Proposition 2.2.8 yielding a positive answer to question 3).

- In Section 2.2.4 we fix a non-degenerate element ω ∈ ∧2V ∗ and consider
the case of sp(V, ω). We compute the geometric resolution in Proposition
2.2.12, and give a binary bracket in Proposition 2.2.15 depending on a
map rω we chose. We show that this bracket does not satisfy the Jacobi
identity, and give an expression for the ternary bracket. In the appendix
2.5.1 we investigate if the binary brackets can be simplified by picking rω

to be a cochain map in some degrees, and show that this cannot be done
when V is 4-dimensional. The answer to question 3) remains inconclusive
in this case.

In Section 2.3 we turn our attention to the higher-dimensional analogues of the
abovementioned cases and address the corresponding questions 2) and 3). In
each of the cases the results of the earlier sections generalize.

- In Section 2.3.1 we consider the foliation of vector fields on a vector bundle
E which are tangent to the zero section. We compute the geometric
resolution in Proposition 2.3.5, and describe an L∞-algebroid structure in
Proposition 2.3.7.

- In Section 2.3.2 we consider the foliation of vector fields on a vector bundle
which are tangent to a vector subbundle, of which the zero section is a
special case. The geometric resolution and L∞-algebroid structure are
given in Proposition 2.3.8.

- In Section 2.3.3 we consider the foliation on an orientable vector bundle
E → L, with non-vanishing section µ ∈ Γ(∧nE), where n = rk(E),
generated (as C∞

E -module) by the linear vector fields which preserve
µ. We give the geometric resolution in Proposition 2.3.10, and the L∞-
algebroid structure in Proposition 2.3.11.

- In Section 2.3.4 we consider the foliation on a vector bundle E → L
generated by the linear vector fields which preserve a non-degenerate
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ω ∈ Γ(∧2E). The projective resolution is given in Proposition 2.3.12, and
a binary bracket of the L∞-algebroid structure in Proposition 2.3.13.

Finally, in Section 2.4 we consider a general foliation F on a vector space V ,
for which the origin p is a fixed point. We show that the fibers over p of any
geometric resolution which is minimal at the origin can be computed directly
from F , without needing to find a geometric resolution (Proposition 2.4.2). In
the case that F is linear, we additionally show that part of the structure of the
isotropy L∞-algebra (see [LGLS20, Section 4.2]), which is an invariant of the
foliation F , can be recovered from the foliation directly (Proposition 2.4.3).

Acknowledgements We thank Marco Zambon for fruitful discussions and
helpful comments. We thank Wouter Castryck and Robin van der Veer for
helpful discussions. We thank Sylvain Lavau for providing useful comments.
We acknowledge the FWO and FNRS under EOS projects G0H4518N and
G0I2222N.

2.2 Zero-dimensional leaves

In this section, we compute a universal L∞-algebroid for some classes of singular
foliations generated by some Lie subalgebra of the Lie algebra of linear vector
fields on a vector space V , addressing questions 1) and 3) from Section 2.1.

Convention. Throughout this section, for a finite-dimensional real vector space
W , we will consider the trivial vector bundle W × V over a finite-dimensional
real vector space V . Its global sections will be denoted by Γ(W ).
Unless stated otherwise, repeated indices will be summed over.

2.2.1 Vector fields vanishing at the origin

In this section we recall Example 3.99 of [LGLS20]. Let V be a real vector
space of dimension n ≥ 0, and let

F0(V ) = {X ∈ X(V ) | X(0) = 0} (2.1)

be the submodule of vector fields on V vanishing in the origin. It is easy to see
that it is a singular foliation. A resolution of F0 can be constructed using the
following lemma.
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Lemma 2.2.1. The complexes

0 Γ(∧nV ∗) . . . Γ(V ∗) Iq 0dn d2 ρ
, (2.2)

0 Γ(∧nV ∗) . . . Γ(V ∗) C∞(V ) R 0dn d2 d1 evq

(2.3)
are exact. Here for k = 1, . . . , n, dk : Γ(∧kV ∗) → Γ(∧k−1V ∗) and ρ : Γ(V ∗) →
Iq are the contraction with the Euler vector field xi∂xi , Iq is the ideal of
functions vanishing at the origin q ∈ V and evq is the evaluation of a function
at q = 0. In particular, the complexes remain exact when applying the functor
− ⊗C∞(V ) Γ(W ) for some vector bundle W × V → V .

Taking W = V and tensoring (2.2) with Γ(V ) ∼= X(V ) we obtain the exact
sequence

0 Γ(∧nV ∗ ⊗ V ) . . . Γ(V ∗ ⊗ V ) F0(V ) 0.dn d2 ρ

(2.4)
Here, and in the rest of this article we use the convention that Γ(V ∗ ⊗ V ) sits
in degree 0, and the differential d• has degree 1.

An L∞-algebroid structure on Γ(∧•V ∗ ⊗ V ) can be given as follows: for the
unary bracket, we take d•, as in (2.4). For the binary bracket we take the
Nijenhuis-Richardson bracket: For 1 ≤ k1, k2 ≤ n define

[−,−] : Γ
(

∧k1V ∗ ⊗ V
)

× Γ
(

∧k2V ∗ ⊗ V
)

→ Γ
(

∧k1+k2−1V ∗ ⊗ V
)

by

[f1 · (ϕ1 ⊗ w1), f2 · (ϕ2 ⊗ w2)] := f1f2 · (ϕ1ιw1(ϕ2) ⊗ w2 − ϵk1k2ϕ2ιw2(ϕ1) ⊗ w1)

+
(
f1ρ(ϕ1 ⊗ w1)(f2) · (ϕ2 ⊗ w2) − f2ρ(ϕ2 ⊗ w2)(f1) · (ϕ1 ⊗ w1)

)
(2.5)

for fi ∈ C∞(V ), ϕi ∈ ∧kiV ∗, wi ∈ V (i = 1, 2). Here ϵk1k2 = (−1)(k1−1)(k2−1),
for v ∈ V, α ∈ ∧kV ∗, ιv(α) ∈ ∧k−1V ∗ is the insertion of v into the first slot of
α, and ρ(ϕi ⊗ wi) is understood to vanish if ki ̸= 1.
One can check that this defines a dg-Lie algebroid over V for which the image
of ρ is exactly F0. We denote it by L∞(F0).

Note that the differentials dp vanish at the origin for p = 2, . . . , n. This implies
that any L∞-algebroid structure with the same property is L∞-isomorphic to
the one above in a neighborhood of the origin: by [LGLS20, Corollary 2.9], any
two L∞-algebroid structures are homotopy equivalent by an L∞-morphism Φ.



ZERO-DIMENSIONAL LEAVES 45

By minimality and [LGLS20, Lemma 4.13iii)], this implies that the homotopy
equivalence is an isomorphism in the origin. As invertibility is an open condition
it follows that it is an isomorphism in a neighborhood of the origin.

2.2.2 Linear vector fields preserving a subspace

Let V be a real vector space of dimension n, and W ⊆ V a linear subspace. Let

FW (V ) := {X ∈ F0(V ) | X(IW ) ⊆ IW }

be the C∞(V )-submodule of linear vector fields tangent to the subspace W .
This is a singular foliation, and is induced by the action of the Lie subalgebra
gl(V,W ) of gl(V ) given by

gl(V,W ) = {A ∈ gl(V ) | A(W ) ⊆ W},

the endomorphisms of V preserving W . The leaves of this foliation consist of
the origin, the connected components of W \{0}, and the connected components
of V \W .

Example 2.2.2. Let V = R2,W = {(x, 0) ∈ R2 | x ∈ R}. Then FW (V ) is
generated by the vector fields x∂x, y∂x, y∂y, and the leaves are the positive
x-axis, the origin, the negative x-axis, the upper half plane and the lower half
plane. In this case gl(V,W ) consists of all upper triangular matrices.

We can describe a minimal universal L∞-algebroid of FW as a L∞-subalgebroid
of L∞(F0). In particular, it will again be a dg-Lie algebroid.

Definition 2.2.3. Let j ∈ {1, . . . , n}. Define Kj ⊆ ∧jV ∗ ⊗ V = Hom(∧jV, V )
by

Kj := {ϕ ∈ ∧jV ∗ ⊗ V | ∀w ∈ W, ∀v1, . . . , vj−1 ∈ V : ϕ(w, v1, . . . , vj−1) ∈ W}.

Proposition 2.2.4.

i) The differential

dj : Γ(∧jV ∗ ⊗ V ) → Γ(∧j−1V ∗ ⊗ V )

as in (2.4) restricts to a map

dj : Γ(Kj) → Γ(Kj−1).

ii) The bracket (2.5) restricts to the subspaces Γ(Kj).
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iii) The subcomplex

0 Γ(Kn) . . . Γ(K1) FW (V ) 0dn d2 ρW (2.6)

is exact, where ρW = ρ|Γ(K1).

Consequently, Γ(K•) with the restrictions of d• and [−,−] is a minimal universal
L∞-algebroid of the foliation FW .

Proof. Items i) and ii) are straightforward computations. For item iii), fix a
complement C of W in V . Then Ki can be identified with ∧iV ∗ ⊗W⊕∧iC∗ ⊗C,
and the complex (2.6) decomposes as

(Γ(K•), ∂) = (Γ(∧•V ∗ ⊗W ) ⊕ Γ(∧•C∗ ⊗ C), ∂W + ∂C),

where
∂W (ϕ) = xiιei

(ϕ)

for ϕ ∈ Γ(∧iV ∗ ⊗ W ), and {ei}n
i=1 is a basis for V , with linear coordinates

{xi}n
i=1. For ψ ∈ Γ(∧iC∗ ⊗ C),

∂C(ψ) = yiιfi(ψ),

where {fi}r
i=1 is a basis for C, and {yi}r

i=1 are the corresponding linear
coordinates. By Lemma 2.2.1, both are exact, concluding the proof.

2.2.3 Vector fields preserving a volume form

The next choice for a Lie algebra g acting linearly on a vector space V we
consider is g = sl(V ), the Lie algebra of traceless endomorphisms. Observe
that the partition of V is identical to the case of gl(V ), but that the underlying
submodules of XV are different. Let µ ∈ ∧nV ∗ be a non-zero element, and
denote the foliation given by the action of sl(V ) by Fµ.

2.2.3.1 The projective resolution

As it is in general not possible to restrict a projective resolution of a module to
a submodule, one cannot directly get a projective resolution of the module of
vector fields generated by the action of sl(V ), by restricting all modules to live
over sl(V ). But for the most part, the resolution we will construct is related to
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the one given in (2.4). Consider the following diagram of C∞(V )-modules:

Γ(∧2V ∗ ⊗ V ) Γ(V ∗ ⊗ V )

Γ(V ∗) Γ(R)

d2

Tr
∂1

, (2.7)

where ∂1 : Γ(V ∗) → Γ(R) is the contraction with the negative of the Euler
vector field xi∂xi and Tr is the trace of endomorphisms.
Now there is a linear map

ϕ2 : ∧2V ∗ ⊗ V → V ∗

by taking partial traces: for ψ ∈ ∧2V ∗, v ∈ V , we set

ϕ2(ψ ⊗ v) = −ιv(ψ).

We now claim that (the constant extension of) ϕ2 completes (2.7) to an anti-
commutative square. Indeed: let {ei}n

i=1 be a basis of V , with corresponding
coordinates {xi}n

i=1, and let ψ ⊗ v ∈ Γ(∧2V ∗ ⊗ V ). Then

∂1(ϕ2(ψ ⊗ v)) = −∂1(ιv(ψ))

= xiιeiιv(ψ)

= −xiιvιei
(ψ)

= −Tr(xiιei(ψ) ⊗ v)

= −Tr(d2(ψ ⊗ v)).

More generally, for 1 ≤ k ≤ n, we can define the anti-symmetrized partial trace
map

ϕk : ∧kV ∗ ⊗ V → ∧k−1V ∗.

For α ∈ ∧kV ∗, v ∈ V , we set

ϕk(α⊗ v) = (−1)k−1ιv(α).

Observe that ϕ1 is the usual trace.
Note that the map ∂1 : Γ(V ∗) → Γ(R) = C∞(V ) as in (2.7) of free C∞(V )-
modules can be extended to obtain a cochain complex

0 Γ(∧nV ∗) . . . Γ(V ∗) C∞(V ) 0∂n ∂2 ∂1 . (2.8)
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The cochain complex is concentrated in negative degrees, with C∞(V ) being
in degree −1. Note that by Lemma 2.2.1, the complex is exact in degrees
−2, . . . ,−n− 1, as it is the truncation of (2.3). The following lemma describes
the compatibility of ϕ with the respective differentials:

Lemma 2.2.5. The map ϕ : (Γ(∧•V ∗ ⊗ V ), d•) → (Γ(∧•−1V ∗), ∂•) is a
cochain map of degree −1, which is surjective in degrees 0, . . . ,−(n− 2), and an
isomorphism in degree −n+ 1, where d• is as in (2.4), and ∂• is as in (2.8).

Proof. Let α⊗ v ∈ Γ(∧k+1V ∗ ⊗ V ). We first show that ϕ anti-commutes with
the respective differential:

∂k(ϕk+1(α⊗ v)) = ∂k((−1)kιv(α))

= (−1)k+1xiιei(ιv(α))

= (−1)kxiιv(ιei(α))

= −ϕk(xiιei
(α) ⊗ v)

= −ϕk(dk+1(α⊗ v)).

To see the surjectivity, pick a basis {ei}n
i=1 of V , and a dual basis {ei}n

i=1 of
V ∗ such that µ = e1 ∧ · · · ∧ en. For k ∈ {1, . . . , n}, a basis for ∧k−1V ∗ is given
by {ei1 ∧ · · · ∧ eik−1 | 1 ≤ i1 < · · · < ik−1 ≤ n}. Given ei1 ∧ · · · ∧ eik−1 , let
q ∈ {1, . . . , n} − {i1, . . . , ik−1}. Then

ϕk(ei1 ∧ · · · ∧ eik−1 ∧ eq ⊗ eq) = ei1 ∧ · · · ∧ eik−1 ,

where q is not summed over. Further, under the identification

V → ∧nV ∗ ⊗ V

v 7→ e1 ∧ · · · ∧ en ⊗ v,

ϕn is the map V → ∧n−1V ∗ given by contraction with the volume form
e1 ∧ · · · ∧ en, which is an isomorphism.

We use the properties of ϕ to construct a projective resolution for Fµ.

Proposition 2.2.6. For i = 1, . . . , n, let Ki ⊆ ∧iV ∗ ⊗ V be defined by

Ki := ker(ϕi).
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The sequence

0 Γ(∧nV ∗) Γ(Kn−1) . . . Γ(K1) Fµ(V ) 0dnϕ−1
n ∂n dn−1 d2 ρµ

(2.9)
is exact, where ρµ = ρ|Γ(K1).

Proof. Note that by definition of ϕ1, K1 = sl(V ), so ρµ is surjective by definition
of Fµ(V ).
Let i ∈ {1, . . . , n− 2}. Consider the following diagram with (anti)-commuting
squares, where the middle and bottom rows are exact by Lemma 2.2.1:

Γ(Ki+2) Γ(Ki+1) Γ(Ki) Γ(Ki−1)

Γ(∧i+2V ∗ ⊗ V ) Γ(∧i+1V ∗ ⊗ V ) Γ(∧iV ∗ ⊗ V ) Γ(∧i−1V ∗ ⊗ V )

Γ(∧i+1V ∗) Γ(∧iV ∗) Γ(∧i−1V ∗) Γ(∧i−2V ∗)

di+2 di+1 di

di+2

ϕi+2 ϕi+1

di+1 di

ϕi ϕi−1

∂i+1 ∂i ∂i−1

For exactness at Γ(Ki), take χ ∈ Γ(Ki) such that di(χ) = 0, where d1 is
understood to be ρµ. Then by exactness of the middle row, there exists
ψ ∈ Γ(∧i+1V ∗ ⊗ V ) such that di+1(ψ) = χ. Now ψ may not be an element of
Γ(Ki+1), so we consider ϕi+1(ψ).
Note that

∂iϕi+1(ψ) = −ϕi(∂i+1(ψ)) = −ϕi(χ) = 0,
so by exactness of (2.8) there exists τ ∈ Γ(∧i+1V ∗) such that

ϕi+1(ψ) = ∂i+1(τ).
Using surjectivity of ϕi+2, lift τ to an element τ̃ ∈ Γ(∧i+2V ∗ ⊗ V ). Then

ϕi+1(ψ + ∂i+2(τ̃)) = ϕi+1(ψ) − ∂i+1(τ) = 0,
so ψ + ∂i+2(τ̃) ∈ Ki+1, and

∂i+1(ψ + ∂i+2(τ̃)) = χ.

For exactness at Γ(Kn−1), consider

0 Γ(∧nV ∗) Γ(Kn−1) Γ(Kn−2)

0 Γ(∧nV ∗ ⊗ V ) Γ(∧n−1V ∗ ⊗ V ) Γ(∧n−2V ∗ ⊗ V )

Γ(∧nV ∗) Γ(∧n−1V ∗) Γ(∧n−2V ∗) Γ(∧n−3V ∗)

dn(ϕn)−1∂n dn−1

dn

ϕn ϕn−1

dn−1

ϕn−2

∂n ∂n−1 ∂n−2

.
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Let ξ ∈ Γ(Kn−1) such that
dn−1(ξ) = 0.

Then there exists η ∈ Γ(∧nV ∗ ⊗ V ) such that

dn(η) = ξ.

As ϕn is an isomorphism, we have η = ϕ−1
n (ϕn(η)). Moreover, we know that

∂n−1(ϕn(η)) = −ϕn−1(dn(η)) = −ϕn−1(ξ) = 0,

so
ϕn(η) = ∂n(π)

for some π ∈ Γ(∧nV ∗). Consequently,

ξ = dn(ϕ−1
n (∂n(π))).

Finally, exactness at Γ(∧nV ∗) is clear.

2.2.3.2 The L∞-algebroid structure

In this section, we will construct the L∞-algebroid structure on the resolution
(2.9) of Fµ(V ). As in most degrees the spaces involved in the resolution of Fµ

are contained in the spaces involved in the resolution of F0, we try to use the
restriction of (2.5). The following lemma shows that this can be done:

Lemma 2.2.7. The bracket (2.5) restricts to the subspaces Γ(Ki).

This gives us a hint on how to extend the bracket to (2.9): on the subcomplex
given by the part up until degree n− 1, it is given by (2.5). Note that there is
no issue when k1 + k2 − 1 = n: since the bracket should land in Γ(Kn) = 0, we
can unambiguously extend this definition when we replace Γ(Kn) by Γ(∧nV ∗).
For degree reasons and the Leibniz identity in a L∞-algebroid, we only have to
specify what happens when we pair the constant extension of X ∈ K1 = sl(V )
with the constant extension of µ ∈ ∧nV ∗. Due to the requirement that the
differential is a derivation of the binary bracket, there is only one choice for
this: We set

[X,µ] := 0 ∈ Γ(∧nV ∗). (2.10)
We then obtain:

Proposition 2.2.8. The binary operation defined by the restriction of (2.5) on
the spaces Γ(Ki), together with the extension of (2.10) defines a dg-Lie algebroid
structure on the resolution (2.9) of Fµ(V ). This is a universal L∞-algebroid of
Fµ, which is minimal at the origin.
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2.2.4 Vector fields preserving the linear symplectic form

Next, we consider the symplectic Lie algebra. Given a vector space V of even
dimension n, and a non-degenerate skew-symmetric bilinear map ω : V ×V → R,
we consider the Lie subalgebra of gl(V ) preserving ω:

Definition 2.2.9. Let (V, ω) be a symplectic vector space. The symplectic Lie
algebra is the Lie subalgebra of gl(V ) given by

sp(V, ω) := {A ∈ gl(V ) | ω(Ax, y) + ω(x,Ay) = 0 ∀x, y ∈ V }, (2.11)

By restricting the anchor ρ to Γ(sp(V, ω)), we obtain a singular foliation

Fω(V ) := ρ(Γ(sp(V, ω)).

In Section 2.2.4.1 we construct a projective resolution of Fω(V ) (Proposition
2.2.12). In Section 2.2.4.2 we construct a part of the L∞-algebroid structure.
We give an expression for the binary bracket (Proposition 2.2.15), depending
on a choice of left inverse rω of an injective cochain map. This bracket does
not satisfy the Jacobi identity, so we give an expression for the ternary bracket,
which serves as a contracting homotopy for the Jacobiator. In appendix 2.5.1
we investigate whether rω can be chosen to be a cochain map in some degrees,
which would simplify the binary bracket. We show that when dim(V ) = 4, rω

can not be chosen as a cochain map in any degree (Proposition 2.5.5).

2.2.4.1 The projective resolution

As before, we first construct the projective resolution of the foliation Fω =
ρ(Γ(sp(V, ω))) on V . The starting point is the same as for sl(V ), but the rest of
the approach will be quite different, as the analog of the map ϕ is not surjective
in negative degrees. First consider the map ϕω

1 : gl(V ) → ∧2V ∗ given by

ϕω
1 (A) = A · ω

for A ∈ gl(V ), where for x, y ∈ V ,

(A · ω)(x, y) = ω(Ax, y) + ω(x,Ay).

The next step is to extend this map to the entire dg-Lie algebra Γ(∧•V ∗ ⊗ V ),
as in (2.4) and (2.5). This immediately raises the question what the codomain
should be. We define for p = 1, . . . , n

ϕω
p : ∧pV ∗ ⊗ V → ∧p−1V ∗ ⊗ ∧2V ∗
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by
ϕω

p (α⊗X) := (−1)p−1ιei
(α) ⊗ ei ∧ ιXω,

where {ei}n
i=1 and {ei}n

i=1 are dual bases of V and V ∗ respectively. When view-
ing the domain and codomain of ϕω

p as Hom(∧pV, V ) and Hom(∧p−1V,∧2V ∗)
respectively, the map ϕω

p can equivalently be described as

ϕω
p (ψ)(v1, . . . , vp−1) = ψ(v1, . . . , vp−1,−) · ω

for ψ ∈ Hom(∧pV, V ), v1, . . . , vp−1 ∈ V .
We now equip the graded C∞(V )-module Γ(∧•V ∗ ⊗ ∧2V ∗) with the differential

∂p : Γ(∧pV ∗ ⊗ ∧2V ∗) → Γ(∧p−1V ∗ ⊗ ∧2V ∗)

given by
∂p(α⊗ τ) := −xiιei

(α) ⊗ τ.

Here the grading is chosen as

Γ(∧•V ∗ ⊗ ∧2V ∗)p = Γ(∧p+1V ∗ ⊗ ∧2V ∗).

Finally, there is an action of the dg-Lie algebra Γ(∧•V ∗⊗V ) on Γ(∧•V ∗⊗∧2V ∗):
for α⊗X ∈ ∧pV ∗ ⊗ V, β ⊗ τ ∈ ∧qV ∗ ⊗ ∧2V ∗, we set

(α⊗X) · (β ⊗ τ) := (−1)p−1αιX(β) ⊗ τ + ιei(α)β ⊗ ei ∧ ιX(τ) (2.12)

for constant sections, and extend it to non constant sections using the Leibniz
rule with respect to the anchor of Γ(gl(V )). Note that by multiplying by
−(−1)(p−1)(q−1), we can turn this into a right action. We have the following
lemma summarizing the properties of the data above, of which the proof is a
direct computation.

Lemma 2.2.10.

i) ϕω
1 is surjective, and ker(ϕω

1 ) = sp(V, ω).

ii) For k ≥ 2, ϕω
k is injective. In particular, ϕω

2 is an isomorphism.

iii) ϕω is a cochain map of degree −1, i.e. we have

ϕω
p dp+1 + ∂pϕ

ω
p+1 = 0.

iv) The operation defined in (2.12) is a dg-Lie algebra action. Consequently,
there is a dg-Lie algebra structure on Γ(∧•V ∗ ⊗ V ) ⊕ Γ(∧•V ∗ ⊗ ∧2V ∗)
encoding this action.
For p ≥ 0, the degree p-part is given by Γ(∧p+1V ∗⊗V )⊕Γ(∧p+1V ∗⊗∧2V ∗),
and the differential is given by d+ ∂.
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v) ϕω is a derivation of the bracket on Γ(∧•V ∗ ⊗ V ) ⊕ Γ(∧•V ∗ ⊗ ∧2V ∗): for
α⊗X ∈ Γ(∧pV ∗ ⊗ V ), β ⊗ Y ∈ Γ(∧qV ∗ ⊗ V ), we have the equality

ϕω
p+q−1([α⊗X,β⊗Y ]) = [ϕω

p (α⊗X), β⊗Y ]+(−1)p−1[α⊗X,ϕω
q (β⊗Y )].

(2.13)

Corollary 2.2.11. By property iii), the differentials d• and ∂• restrict and
descend to the kernel and cokernel of ϕω respectively. We denote the differential
induced by ∂• on Γ(coker(ϕω)) by ∂̄•.

Using these properties, we can construct a projective resolution:

Proposition 2.2.12. For i = 3, . . . , n+ 1, let Ci be defined as Ci := coker(ϕω
i ).

The sequence

0 Γ(Cn+1) . . . Γ(C3) Γ(K) Fω(V ) 0∂̄n ∂̄3 d2(ϕω
2 )−1∂2

,

(2.14)
is exact, where K = sp(V, ω). Here ϕω

n+1 : 0 → Γ(∧nV ∗ ⊗ ∧2V ∗) is understood
to be the zero map.

Proof. We start by proving exactness at Γ(Cp) for p = 4, . . . , n+ 1. Consider
the diagram

. . . Γ(∧pV ∗ ⊗ V ) Γ(∧p−1V ∗ ⊗ V ) Γ(∧p−2V ∗ ⊗ V )

. . . Γ(∧p−1V ∗ ⊗ ∧2V ∗) Γ(∧p−2V ∗ ⊗ ∧2V ∗) Γ(∧p−3V ∗ ⊗ ∧2V ∗)

. . . Γ(Cp) Γ(Cp−1) Γ(Cp−2)

dp+1 dp

ϕω
p ϕω

p−1

dp−1

ϕω
p−2

∂p ∂p−1 ∂p−2

∂p ∂p−1 ∂p−2

For τ ∈ Γ(∧p−1V ∗ ⊗ ∧2V ∗), assume that there exists X ∈ Γ(∧p−1V ∗ ⊗ V ) such
that

∂p−1(τ) = ϕω
p−1(X).

Then
ϕω

p−2(dp−1(X)) = −∂p−2(ϕω
p−1(X)) = 0,

and by injectivity of ϕω
p−1, it follows that dp−1(X) = 0. By exactness of (2.4)

we find X = dp(Y ). Now

∂p−1(τ + ϕω
p (Y )) = ϕω

p−1(X) − ϕω
p−1(X) = 0,
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so by exactness of (2.3), with W = ∧2V ∗, we find that there exists µ ∈
Γ(∧pV ∗ ⊗ ∧2V ∗) such that

τ = ∂p(µ) − ϕω
p (Y ),

showing that the class of τ modulo the image of ϕω is a coboundary.

For exactness at Γ(C3), assume that for τ ∈ Γ(∧2V ∗ ⊗ ∧2V ∗) such that

d2(ϕω
2 )−1∂2(τ) = 0.

Then there exists X ∈ Γ(∧3V ∗ ⊗ V ) with

(ϕω
2 )−1∂2(τ) = d3(X),

or
∂2(τ + ϕω

2 (X)) = 0,

which implies that there exists µ ∈ Γ(∧3V ∗ ⊗ ∧2V ∗) such that

∂3(µ) = τ + ϕω
2 (X),

so the class of τ module the image of ϕω is a coboundary.
Finally, by definition of Fω the anchor restricted to sp(V, ω) is surjective, so it
suffices to show that the kernel is precisely (d2(ϕω

2 )−1∂2)(Γ(∧2V ∗ ∧2 V ∗). Let
A ∈ Γ(sp(V, ω)) such that

ρω(A) = 0.

Then A = d2(X) for some X ∈ Γ(∧2V ∗ ⊗ V ). As ϕω
2 is an isomorphism, we

have
A = d2(ϕω

2 )−1ϕω
2 (X).

As
∂1ϕ

ω
2 (X) = −ϕω

1 (d2(X)) = ϕω
1 (A) = 0,

it follows that ϕω
2 (X) = ∂(µ) for some µ ∈ Γ(∧2V ∗ ⊗ ∧2V ∗), and

A = d2(ϕω
2 )−1∂2(µ),

concluding the proof.

2.2.4.2 The (partial) L∞-algebroid structure

In this section we construct part of an L∞-algebroid structure on the resolution
(2.14). Due to the algebraic structures present, there is a canonical Lie bracket
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{−,−} on the graded C∞(V )-module underlying the resolution (2.14). It is
given by

{A,B} = [A,B]

for A,B ∈ Γ(sp(V, ω)), where [−,−] is the usual bracket, and

{A,ωk + im(ϕω
k+1)} = [A,ωk] + im(ϕω

k+1)

for A ∈ Γ(sp(V, ω)), ωk ∈ Γ(coker(ϕω
k+1)). Here the bracket [−,−] on the right

hand side is the semi-direct product bracket as described in Lemma 2.2.10iv).

Remark 2.2.13. One way to see that {−,−} is well-defined, is by forgetting
the differentials d• and ∂•, and viewing (Γ(∧•V ∗) ⊕ Γ(∧•V ∗ ⊗ ∧2V ∗), ϕω) as a
dg-Lie algebra. The resolution (2.14) of Fω(V ) is then precisely the cohomology
of this dg-Lie algebra. Consequently, the bracket equips the graded module
with a graded Lie algebra structure.

When at least one of the entries of {−,−} has degree 0, the differential in (2.14)
is a derivation of {−,−}. However, for elements ω1, ω2 ∈ Γ(coker(ϕω

3 )), for the
differential in (2.14) to be a derivation of the bracket, the equation

[d2(ϕω
2 )−1∂2ω1, ω2] − [ω1, d2(ϕω

2 )−1∂2ω2] = ∂3[ω1, ω2] = 0 ∈ Γ(C4) (2.15)

must hold. This means that the expression (2.15) must lie in the image of
ϕω

4 , but one can check that this is not the case: the binary operation {−.−}
therefore does not equip the resolution (2.14) with a L∞-algebroid structure,
as the differential is not a derivation of the binary bracket.
To rectify this, we modify {−.−} to obtain a new binary operation J−,−K on
the resolution (2.14), for which the differential is a derivation.
Before we define this binary operation, we make a choice of left inverse of the
map

ϕω
p : Γ(∧pV ∗ ⊗ V ) → Γ(∧p−1V ∗ ⊗ ∧2V ∗)

for p ≥ 2. Define
rω

p : ∧pV ∗ ⊗ ∧2V ∗ → ∧p+1V ∗ ⊗ V

by

rω
p (ωp⊗τ) =

(
1

p+ 1ωp ∧ ιei
(τ) − (−1)p

p(p+ 1) ιei
(ωp) ∧ τ

)
⊗ω−1(ei) ∈ ∧p+1V ∗⊗V

for ωp ∈ ∧pV ∗, τ ∈ ∧2V ∗. Further, {ei}n
i=1, {ei}n

i=1 are dual bases for V
and V ∗ respectively, and ω−1 : V ∗ → V is the inverse of the contraction map
ω : V → V ∗. The proof of the following lemma is a straightforward computation:

Lemma 2.2.14.
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i) For k ≥ 2, rω
k intertwines the sp(V, ω)-action on Γ(∧kV ∗ ⊗ ∧2V ∗) and

Γ(∧k+1V ∗ ⊗ V ).

ii) For k ≥ 2,
rω

k ◦ ϕω
k+1 = idΓ(∧k+1V ∗⊗V ).

We can now give an expression for the binary operation J−,−K for which the
differential of the resolution (2.14) is a derivation, providing the binary bracket
for an L∞-algebroid structure on the resolution.

Proposition 2.2.15. When at least one entry of J−,−K has degree 0, we set

J−,−K = {−,−}.

Now let p, q ≥ 2. For ωp ∈ Γ(∧pV ∗ ⊗ ∧2V ∗), ωq ∈ Γ(∧qV ∗ ⊗ ∧2V ∗), set

Jωp, ωqK := [rω
p−1∂pPp(ωp), Pq(ωq)] + [Pp(ωp), rω

q−1∂qPq(ωq)] mod im(ϕω
p+q)
(2.16)

in
Γ(coker(ϕω

p+q))

.Here Pp : Γ(∧pV ∗ ⊗ ∧2V ∗) → Γ(ker(rω
p )) is the projection

Pp = id − ϕω
p+1 ◦ rω

p ,

and [−,−] on the right hand side is the semi-direct product bracket as described
in Lemma 2.2.10iv).
Then the differential of (2.14) is a derivation of J−,−K.

Proof. The proof is a direct computation using Lemma 2.2.10iv) and Lemma
2.2.14ii).

The natural question is now: Does J−,−K satisfy the Jacobi identity?

To address this, we distinguish two cases. We first compute the Jacobiator
when at least one of the entries has degree 0, and then when all the entries have
negative degree.

- For A,B,C ∈ Γ(sp(V, ω)), the Jacobiator of J−,−K is the Jacobiator of
the Lie algebroid Γ(sp(V, ω), which vanishes.

- For A,B ∈ Γ(sp(V, ω)), ωk ∈ Γ(coker(ϕω
k+1)), the Jacobiator being zero

is equivalent to coker(ϕω
k+1) being an sp(V, ω)-representation.
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- For A ∈ Γ(sp(V, ω)), ωk ∈ Γ(coker(ϕω
k+1), ωl ∈ Γ(coker(ϕω

l+1), the
Jacobiator being zero is equivalent to the sp(V, ω)-action on Γ(coker(ϕω

j ))
being a derivation of J−,−K restricted to negative degrees. This is the
case because rk intertwines the sp(V, ω)-actions on Γ(∧kV ∗ ⊗ ∧2V ∗) and
Γ(∧k+1V ∗ ⊗ ∧2V ∗).

Consequently, the Jacobiator vanishes when at least one entry has degree 0.
Now let k, l,m ≥ 2, and ωk ∈ Γ(coker(ϕω

k+1)), ωl ∈ Γ(coker(ϕω
l+1)), ωm ∈

Γ(coker(ϕω
m+1)). A lengthy computation shows that the Jacobiator

JJωk, ωlK, ωmK + (−1)(k−1)(l+m)JJωl, ωmK, ωkK + (−1)(m−1)(k+l)JJωm, ωkK, ωlK

does not vanish, but is equal to

∂(J−,−,−K)(ωk, ωl, ωm) =∂Jωk, ωl, ωmK + J∂(ωk), ωl, ωmK

+ (−1)k−1Jωk, ∂(ωl), ωmK + (−1)k+lJωk, ωl, ∂(ωm)K,
(2.17)

where Jωk, ωl, ωmK is given by the class of

[rk+l−1 ̂Jωk, ωlK, Pm(ωm)]+(−1)(k−1)(l+m)[rk+l−1 ̂Jωl, ωmK, Pk(ωk)]

+ (−1)(m−1)(k+l)[rk+l−1 ̂Jωm, ωkK, Pl(ωl)] (2.18)

modulo the image of ϕω
k+l+m−1. and

̂Jωk, ωlK = [rk−1∂kPk(ωk), Pl(ωl)]+[Pk(ωk), rl−1∂lPl(ωl)] ∈ Γ(∧k+l−1V ∗⊗∧2V ∗).

We recognize equation (2.17) as a contracting homotopy for the Jacobiator:
consequently, −J−,−,−K is a ternary operation satisfying the higher Jacobi
identity an L∞-algebroid must satisfy.

In particular, this does not equip the complex (2.14) with the structure of a
dg-Lie algebroid as in the case of gl(V ), gl(V,W ), and sl(V ). As this structure
is only unique up to L∞-algebroid homotopy, this does of course not exclude the
possibility that there exists a dg-Lie algebroid structure inducing the foliation
Fω.

In appendix 2.5.1, we investigate to what extent rω can be chosen to (anti)-
commute with the differentials, as this would simplify both the binary and
ternary bracket.

Remark 2.2.16.
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- For degree reasons, the operation J−,−,−K vanishes when dimV ≤ 4.
This means that when dimV = 2 or dimV = 4, the foliation Fω does
admit a universal L∞-algebroid with only a unary and binary bracket. Of
course, for dimV = 2, sp(V, ω) = sl(V ), for which it was already known
that a dg-Lie algebroid structure structure exists.

- When dimV = 6, the unary, binary and ternary bracket determine the
full L∞-algebroid structure.

2.3 Higher-dimensional leaves

In this section we address question 2) of Section 2.1. Instead of considering
foliations on a vector space with linear generators, we consider foliations F on
vector bundles π : E → L which are generated by fiberwise linear vector fields
such that the zero section is a leaf.

For x ∈ L the fibers Ex = π−1({x}) of π : E → L are transverse to L, the
foliation F restricts to the fibers ([AS09, Proposition 1.10]). We consider
foliations for which the restriction F|Ex

coincides with one of the examples in
Section 2.2. All results given in Section 2.2 will carry over, although in order
to define the analogue of Fµ and Fω we need the existence of non-vanishing
sections of ∧rk(E)E∗ and ∧2E∗ respectively.

In Section 2.3.1, we consider the foliation of all vector fields on the vector bundle
E, for which the restriction to the zero section is tangent to the zero section.
This foliation consists of all fiberwise linear vector fields and is the analogue of
F0 in Section 2.2.1.

In Section 2.3.2, we consider the foliation of all fiberwise linear vector fields on
E tangent to a subbundle D, which is the analogue of FW in Section 2.2.2.

In Section 2.3.3, we assume that E is orientable, and consider the foliation of
all fiberwise linear vector fields on E which preserve a non-vanishing (on L)
section µ ∈ Γ(∧rk(E)E∗), which is the analogue of Fµ in Section 2.2.3.

In Section 2.3.4, we assume that E → L is a symplectic vector bundle with
non-degenerate ω ∈ Γ(∧2E∗), and consider the foliation of all fiberwise linear
vector fields on E which preserve ω, which is the analogue of Fω in Section
2.2.4.
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2.3.1 Vector fields tangent to the zero section

To generalize Section 2.2.1, we need a generalization of the Lie algebra gl(V )
for a vector space V to a vector bundle. Let L be a smooth manifold, and let
π : E → L be a (real) vector bundle of rank n. One way to generalize gl(V )
would be to use the Lie algebra bundle End(E). This is however not the right
thing to consider: although it acts infinitesimally on E, for x ∈ L the leaves of
the foliation are given by 0x ∈ Ex and the connected components of Ex \0x. We
are however interested in the situation where the zero section is a leaf, and the
transverse foliation at a point of the zero section is given by (2.1). This is the
case when dealing with a linearizable foliation around an embedded codimension
n leaf with isotropy Lie algebra bundle End(E) acting on the n-dimensional
fiber of the normal bundle by all vector bundle maps E → E.
First recall that there are two distinguished classes of smooth functions on
a vector bundle E. The fiberwise constant maps, given by the image of π∗ :
C∞(L) → C∞(E), and the fiberwise linear ones, given by Γ(E∗).
Now let

Xlin(E) = {X ∈ X(E) | X(π∗(C∞(L))) ⊆ π∗(C∞(L)), X(Γ(E∗)) ⊆ Γ(E∗)}

be the set of vector fields preserving the fiberwise constant functions and
fiberwise linear functions. First off, we note that Xlin(E) is isomorphic to the
sections of a transitive Lie algebroid over L (see [KSM02, Theorem 1.4]).

Lemma 2.3.1.

i) There is a short exact sequence of C∞(L)-modules

0 Γ(End(E)) Xlin(E) X(L) 0.a ρ

Here ρ is the restriction of a vector field to the subalgebra π∗(C∞(L)) and

a(A)(f) = d

dt

∣∣∣∣
t=0

f ◦ exp(−tA),

which is a fiberwise extension of the identification of linear vector fields
on a vector space with the endomorphisms on the vector space.

ii) Xlin(E) is a finitely generated projective C∞(L)-module. So there exists
a vector bundle gl(E) such that Xlin(E) = Γ(gl(E)).

iii) Xlin(E) is closed under the Lie bracket of vector fields.

iv) The triple (gl(E), ρ, [−,−]) is a Lie algebroid.
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Proof. i) is a local computation, ii) follows from i), and iii) and iv) are immediate.

We can now construct a singular foliation on E for which L is a leaf: let

FL(E) = {X ∈ X(E) | X|L ∈ X(L)}.

Lemma 2.3.2. FL(E) = Im(C∞(E) ⊗C∞(L) Xlin(E) m→ X(E)), where m is
the natural multiplication map.

Proof. It follows from a local computation.

Remark 2.3.3. Note that C∞(E) ⊗C∞(L) Xlin(E) = Γ(π∗(gl(E))), which are
the sections of the action Lie algebroid corresponding to the natural action of
Xlin(E) on E. The anchor of this action Lie algebroid π∗(gl(E)) is m, and the
bracket is given by

[f ⊗X, g ⊗ Y ] = fg ⊗ [X,Y ] + fX(g) ⊗ Y − gY (f) ⊗X

for f, g ∈ C∞(E), X,Y ∈ Xlin(E).

2.3.1.1 The projective resolution

Lemma 2.3.2 now gives a first step in the resolution of FL(E):

Γ(π∗(gl(E))) FL(E) 0.m

Observe that m is not injective! However, the kernel can be explicitly described.
As a first step, we show that the kernel only affects the direction transverse to
the leaf.
Lemma 2.3.4.

ker(m) ⊆ Γ(π∗(End(E))) ⊆ Γ(π∗(gl(E))).

The following argument is thanks to Marco Zambon.

Proof. There is a commutative diagram of C∞(E)-modules given by

Γ(π∗(gl(E))) X(E)

Γ(π∗(TL))

m

Id⊗ρ
dπ .

The statement now follows from Lemma 2.3.1i).
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Viewing End(E) as E∗ ⊗ E, we can write down a complex analogous to (2.4).

0 Γ(π∗(∧nE∗ ⊗ E)) . . . Γ(π∗(gl(E))) FL(E) 0,dn d2

(2.19)
where

dk : Γ(π∗(∧kE∗ ⊗ E)) → Γ(π∗(∧k−1E∗ ⊗ E))

is given by
dk(α⊗ e) = yiιei

(α) ⊗ e, (2.20)

for α ⊗ e ∈ Γ(π∗(∧k(E∗ ⊗ E))), {ei}n
i=1 a local frame of E, and {yi}n

i=1 the
corresponding linear coordinates (note that this does not depend on the choice
of frame and defines a global section ϵ ∈ Γ(π∗E)). We then have:

Proposition 2.3.5. The complex (2.19) is exact.

Proof. Proving exactness is completely analogous to the case considered in
Section 2.2.1: it suffices to pick an open cover of L over which E trivializes (so
π∗(E) trivializes over the preimages of this cover), and show exactness over this
open cover. But for trivial bundles the result is equivalent to the exactness of
(2.4).

2.3.1.2 The L∞-algebroid structure

We claim that we can again find a dg-Lie algebroid structure on the resolution
(2.19). Note that for degrees −1, . . . ,−n + 1, the involved spaces are simply
the fiberwise extensions of (2.4), so we take the fiberwise extension of (2.5). To
incorporate Xlin(E) inside into this, we recall the following:

Lemma 2.3.6. The action of Xlin(E) on Γ(E∗) extends to Γ(E), all tensor,
wedge and symmetric products and their pullbacks to E.

Proof. Recall that an action of Xlin(E) on a vector bundle F is a flat gl(E)-
connection on the vector bundle F . As the action on Γ(E∗) is equivalent to a
gl(E)-connection on E∗, one can dualize this connection, and extend it via the
Leibniz rule to tensor powers.
Finally, to extend the action to the pullback, we recall that Γ(π∗(E∗)) =
C∞(E) ⊗C∞(L) Γ(E∗), and that both factors have a natural action of Xlin(E).
For g⊗X ∈ C∞(E) ⊗C∞(L) Xlin(E), f ⊗α ∈ Γ(π∗(E∗)), the action is given by

(g ⊗X) · (f ⊗ α) = gX(f) ⊗ α+ gf ⊗X(α).

Since duals and tensors commute with pullbacks, the result follows.
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Using these actions, we can describe a dg-Lie algebroid structure on the
resolution (2.19):

Proposition 2.3.7. The complex (2.19) carries a dg-Lie algebroid structure,
where the binary bracket is given by the analogue of equation (2.5) on elements of
degree −1 and lower, and the bracket involving an element f⊗X ∈ Γ(π∗(gl(E)))
and an element g ⊗ α⊗ e ∈ Γ(π∗(∧kE∗ ⊗ E)) for f, g ∈ C∞(E), X ∈ Xlin(E),
α ∈ Γ(∧kE∗), e ∈ Γ(E) is given by

[f ⊗X, g ⊗ α⊗ e] = fX(g) ⊗ α⊗ e+ fg ⊗X · (α⊗ e).

The bracket involving two elements of Γ(π∗(gl(E))) is given by the action Lie
algebroid bracket.

2.3.2 Linear vector fields preserving a subbundle

Let π : E → L be a vector bundle and D ⊆ E a vector subbundle. In this
section we combine Sections 2.2.2 and 2.3.1 to give a projective resolution of
the subfoliation FD ⊆ FL given by

FD(E) = {X ∈ FL(E) | X(ID) ⊆ ID},

where ID is the vanishing ideal of D ⊆ E. In other words, FD(E) consists of
all vector fields which are tangent to the subbundle D. Note that when D = 0,
we are in the situation of Section 2.3.1.
This can be approached in a similar way as FL: define

Xlin(E,D) := {X ∈ Xlin(E) | X(Γ(Ann(D))) ⊆ Γ(Ann(D))},

where Γ(Ann(D)) ⊆ Γ(E∗) is viewed as a subset of C∞(E).

For i ≥ 2, let Ki ⊆ ∧iE∗ ⊗ E be the subbundle given by

Ki := {ϕ ∈ ∧iE∗ ⊗ E | ∀d ∈ D,∀e1, . . . , ei−1 ∈ E : ϕ(d, e1, . . . , ei−1) ∈ D},

Here the condition should be read fiberwise. Further, define gl(E,D) ⊆ gl(E)
as the subbundle whose sections are precisely Xlin(E,D). Then the analogue of
Proposition 2.2.4 holds, and we find:

Proposition 2.3.8.

i) For j ≥ 2, the differential

dj : Γ(π∗(∧jE∗ ⊗ E)) → Γ(π∗(∧j−1E∗ ⊗ E))
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as in (2.19) restricts to a map

dj : Γ(π∗(Kj)) → Γ(π∗(Kj−1)),

and d2(Γ(π∗(K2))) ⊆ Γ(π∗(gl(E,D))).

ii) The complex

0 Γ(π∗(Kn)) . . .

Γ(π∗(gl(E,D))) FD(E) 0

dn

d2
ρD

(2.21)

is exact.

iii) The bracket as described in Proposition 2.3.7 restricts to (2.21).

Consequently, (2.21) with the restrictions of the differential and bracket is a
universal L∞-algebroid of the foliation FD, which is minimal at points of L.

2.3.3 Vector fields preserving a volume form

In Section 2.2.3 we constructed the universal L∞-algebroid for the foliation
given by the action of sl(V ) for an n-dimensional vector space V . Although we
made the choice of a volume form, this was not strictly necessary in this case.

Now if we want to generalize this example to the case of higher dimensional
leaves, i.e. a linear foliation on a vector bundle π : E → L of rank n, such that
the zero section is a leaf and the transverse foliation on the fibers Ex for x ∈ L
is isomorphic to the one given by the action of sl(Ex), one approach would be
to take an appropriate Lie subalgebroid sl(E,µ) of gl(E) and to look at the
induced foliation on E. To generalize the special linear subalgebra, the sections
of the Lie subalgebroid sl(E,µ) should sit in a short exact sequence

0 Γ(End0(E)) Γ(sl(E,µ)) X(L) 0,a ρ (2.22)

where End0(E) is the kernel of the vector bundle map Tr : End(E) → R given
by the trace.

2.3.3.1 The projective resolution

Assume that E is orientable and pick a volume form µ ∈ Γ(∧nE∗). Then we
can identify the Lie algebroid sl(E,µ) as follows: Let

Xµ
lin(E) = {X ∈ Xlin(E) | X · µ = 0},
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where X ·µ is defined as in Lemma 2.3.6. A local computation shows that there
exists a vector bundle sl(E,µ) satisfying (2.22) such that

Γ(sl(E,µ)) = Xµ
lin(E)

analogous to Lemma 2.3.1. To construct the projective resolution, we adopt a
similar approach as in the case where L was a point. Define

T̂r : Xlin(E) → Γ(∧nE∗)

by
T̂r(X) = −X · µ.

Clearly, Xµ
lin(E) = ker(T̂r). Moreover, this really extends the trace:

Lemma 2.3.9. For A ∈ Γ(End(E)),

T̂r ◦ a(A) = Tr(A)µ.

Proof. Pick a local frame {ei}n
i=1 for E and a dual frame {ei}n

i=1 for E∗, such
that µ = e1 ∧ · · · ∧ en. Then

T̂r(a(A)) = −
n∑

i=1
e1 ∧ · · · ∧ d

dt

∣∣∣∣
t=0

ei ◦ exp(−tA) ∧ · · · ∧ en

= −
n∑

i=1
e1 ∧ · · · ∧ ei ◦ d

dt

∣∣∣∣
t=0

exp(−tA) ∧ · · · ∧ en

=
n∑

i=1
e1 ∧ · · · ∧ ei ◦A ∧ · · · ∧ en

= Tr(A)µ.

We now apply the same ideas as in the case where L is a point. As in Lemma
2.3.4, the kernel of ρµ : Γ(π∗(sl(E,µ))) → X(E) is contained in Γ(π∗(End0(E))),
so we proceed in a similar way as in Section 2.2.3. Define for i = 2, . . . , n the
vector bundle map

ϕi : ∧iE∗ ⊗ E → ∧i−1E∗

over L by
ϕi(α⊗ e) = (−1)i−1ιe(α)

for α ∈ ∧iE∗, e ∈ E. Setting Ki = ker(ϕi), we obtain the following analog of
Proposition 2.2.6:
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Proposition 2.3.10.

0 Γ(π∗(∧nE∗)) Γ(π∗(Kn−1)) . . .

Γ(π∗(sl(E,µ))) Fµ
L(E) 0

dnϕ−1
n ∂n dn−1

d2
ρµ

(2.23)
is exact.

2.3.3.2 The L∞-algebroid structure

As in Section 2.2.3.2, to define the L∞-algebroid structure on the resolution
(2.23), we would like to restrict the bracket as described in Proposition 2.3.7 to
the kernel of the morphisms ϕk for k ∈ {1, . . . , n− 1}. For elements of degrees
−1 and lower and for two elements from Γ(π∗(sl(E,µ))) this is clear, as this is
just the fiberwise extension of Lemma 2.2.7.
For the bracket between Γ(π∗(sl(E,µ))) and Γ(π∗(Kq)), take an element f ⊗
α ⊗ e ∈ Γ(Kq), where f ∈ C∞(E), α ∈ Γ(∧qE∗), e ∈ Γ(E), and an element
X ∈ Γ(π∗(sl(E,µ))), we compute

(−1)q−1ϕq([X, f ⊗ α⊗ e]) = ρµ(X)(f) ⊗ ιe(α) + f ⊗ ιe(X · α) + f ⊗ ιX·e(α)

= ρµ(X)(f)ιe(α) + f ⊗X · (ιe(α))

= 0,

as f ⊗ α⊗ e ∈ Γ(Kq) means that ιe(α) = 0. Hence, the bracket restricts to the
subspaces given by the kernels of the ϕk. Finally, as in Section 2.2.3.2, we use
the natural action of Γ(π∗(sl(E,µ))) on Γ(π∗(∧nE∗)) ∼= C∞(E)µ to define the
bracket between degree 0 and −n+ 1.
Therefore, we again obtain a dg-Lie algebroid structure:

Proposition 2.3.11. The resolution (2.23) of Fµ
L(E) carries a dg-Lie algebroid

structure, where the binary bracket is the restriction of the one described in
Proposition 2.3.7 when both entries have degrees 0, . . . ,−n+ 2, and the bracket

[X, τ ]

of X ∈ Γ(π∗sl(E,µ)) with τ ∈ Γ(π∗(∧nE∗)) is given by the natural action of X
on τ as in Lemma 2.3.6.
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2.3.4 Linear vector fields preserving a fiberwise symplectic
form

We now turn to the symplectic case: let π : E → L be a symplectic vector
bundle with ω ∈ Γ(∧2E∗) a non-degenerate skew-symmetric bilinear form. By
now we know how to construct a Lie subalgebroid of gl(E) of linear vector fields
preserving ω: consider

Xω
lin(E) := {X ∈ Xlin(E) | X · ω = 0},

where X · ω is defined as in Lemma 2.3.6. Note that Xω
lin(E) is closed under

the Lie bracket of Xlin(E).
As in the previous section, there exists a vector bundle sp(E,ω) over L, such
that

Γ(sp(E,ω)) = Xω
lin(E).

We therefore obtain a Lie subalgebroid sp(E,ω) ⊆ gl(E) over L, which generates
a linear foliation Fω

L on E. The zero section is a leaf, and the transverse foliation
on Ex for x ∈ L is given by the standard sp(Ex, ωx)-action on Ex.

2.3.4.1 The projective resolution

We proceed as in Section 2.2.4. Define for p = 1, . . . , n+ 1 the vector bundle
map

ϕω
p : ∧pE∗ ⊗ E → ∧p−1E∗ ⊗ ∧2E∗

over L, given by

ϕω
p (α⊗ e) = (−1)p−1ιei(α) ⊗ ei ∧ ιe(ω),

where {ei}n
i=1 and {ei}n

i=1 are dual local frames of E and E∗ respectively. Note
that ϕω

p is independent of the choice of basis.

Define the differentials

dp : Γ(π∗(∧pE∗ ⊗ E)) → Γ(π∗(∧p−1E∗ ⊗ E))

as in equation (2.20), and

∂p : Γ(π∗(∧pE∗ ⊗ ∧2E∗)) → Γ(π∗(∧p−1E∗ ⊗ ∧2E∗)),

given by
∂p(α⊗ τ) = −ιϵ(α) ⊗ τ

for α ∈ Γ(π∗(∧pE∗)), τ ∈ Γ(π∗(∧2E∗)). Then ϕω is a cochain map of degree
−1, and setting Ci := coker(ϕω

i ), with induced differentials ∂• : Γ(π∗(Cp)) →
Γ(π∗(Cp−1)) we can describe a projective resolution as in Section 2.2.4:
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Proposition 2.3.12. The sequence

0 Γ(π∗(Cn+1)) . . . Γ(π∗(C3))

Γ(π∗(sp(E,ω))) Fω
L (E) 0

∂n ∂3

d2ϕ−1
2 ∂2

ρω

(2.24)
is exact.

2.3.4.2 The (partial) L∞-algebroid structure

To obtain the binary brackets, we follow the same approach as in Section 2.2.4.
Let

rω
p : Γ(∧pE∗ ⊗ ∧2E∗) → Γ(∧p+1E∗ ⊗ E)

be defined by

rω
p (αp ⊗ τ) =

(
1

p+ 1αp ∧ ιei(τ) − (−1)p

p(p+ 1) ιei(αp) ∧ τ

)
⊗ ω−1(ei),

for α ∈ Γ(∧pE∗), τ ∈ Γ(∧2E∗). Then:

Proposition 2.3.13. Using the notation from Section 2.2.4.2, the binary
operation J−,−K on (2.24) defined by

- The standard π∗(sp(E,ω))-action on itself and π∗(Ci) for i = 3, . . . , n
when one of the entries lies in Γ(π∗(sp(E,ω))),

-
Jωp, ωqK = [rω

p−1∂pPp(ωp), Pq(ωq)] + [Ppωp, rq−1∂qPq(ωq)],

for ωp ∈ Γ(π∗(∧pE∗ ⊗ ∧2E∗)), ωq ∈ Γ(π∗(∧qE∗ ⊗ ∧2E∗)) where

Pp : Γ(π∗(∧pE∗ ⊗ ∧2E∗)) → Γ(π∗(ker(rω
p )))

is the projection id − ϕω
p+1 ◦ rω

p .

equips (2.24) with a differential graded almost Lie algebroid structure, as in
[LGLS20, Definition 3.68].

The same remarks as in Section 2.2.4 can be made:

Remark 2.3.14.
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- The operation defined in Proposition 2.3.13 satisfies the Jacobi identity
if at least one entry has degree 0, but not when all of the entries have
degree ≤ −1. The analogue of (2.18) defines a ternary operation which
serves as a contracting homotopy for the Jacobiator.

- When the rank of E is at most 4, the Jacobi identity is trivially satisfied.

- When the rank of E is equal to 6, the full L∞-algebroid structure is
determined by the differential, the binary bracket as in Proposition 2.3.13
and the analogue of (2.18).

2.4 The isotropy L∞-algebra in a fixed point

Let F be a foliation on the vector space V . Assume that the origin p ∈ V be
a leaf of F . In [LGLS20, Section 4.2] the authors define an L∞-algebra with
trivial differential associated to a leaf of a foliation. Given a minimal resolution

0 Γ(En) . . . Γ(E0) F 0∂n ∂1 ρ (2.25)

of F at p, and an L∞-algebroid structure {ℓk, ρ}k∈N on Γ(E•), it is defined
by restricting the multibrackets ℓk to the fibers (Ei)p, which is well-defined
because ρp = 0. This L∞-algebra is an invariant of F , extending the isotropy
Lie algebra F/IpF , which is canonically isomorphic to (E0)p with the restriction
of ℓ2 ([LGLS20, Proposition 4.14]). In particular, the binary bracket ℓ2 turns
(Ei)p into a (E0)p-representation. In this section we show that the spaces (Ei)p

can be recovered directly from F , without needing to find a projective resolution
of F . Moreover, we show that if F is linear, the (E0)p-representations on the
(Ei)p can be determined explicitly. Note that the (E0)p-representation on (E0)p

is just the adjoint representation. This construction builds on [LGLS20, Remark
4.9] which states the following:

Lemma 2.4.1.
(Ei)p

∼= TorC∞(V )
i (F ,R),

where the C∞(V )-module structure on R is defined by evaluation in the origin.

Proof. One way to construct TorC∞(V )
i (F ,R) is to take a projective resolution

0 Γ(En) . . . Γ(E0) F 0∂n ∂1 ρ

of F , then take the tensor product with R over C∞(V ) to obtain

0 Γ(En) ⊗C∞(V ) R . . . Γ(E0) ⊗C∞(V ) R 0∂n⊗id ∂1⊗id
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and compute the cohomology. As Γ(Ei) ⊗C∞(V ) R ∼= (Ei)p and the differentials
become trivial, the result follows.

It is however a well-known fact (see [Wei95, Theorem 2.7.2] for instance) that
instead of first taking a projective resolution of F and then taking the tensor
product with R, we can equivalently first take a projective resolution of R,
and then take the tensor product with F and compute cohomology. A major
advantage here is that we know an explicit resolution of R: it is given by the
complex (2.3). We therefore obtain:

Proposition 2.4.2. For i = 0, . . . , n, we have

(Ei)p
∼= Hi(Γ(∧•V ∗) ⊗C∞(V ) F(V ), d• ⊗ id) (2.26)

where ∧−1(V ∗) is understood to be 0, and d = ιxi∂xi
.

Next, we consider the action σi of the isotropy Lie algebra F/IpF ∼= (E0)p on
(Ei)p by the binary bracket ℓ2. It turns out that when F is a linear foliation,
we can define a canonical action on the right hand side of (2.26) which under
the isomorphism of Proposition 2.4.2 corresponds to σi.

Proposition 2.4.3. Let F be a linear foliation on V . Then:

i) The map
lin : F → F

given by
X 7→ X(1) ∈ F

descends to an injective Lie algebra homomorphism

lin : F/IpF → F .

Here X(1) denotes the linear part of the vector field X.

ii) Let i = 0, . . . , n. For X ∈ F(V ), α ⊗ Y ∈ Γ(∧iV ∗) ⊗C∞(V ) F(V ), the
assignment

(X + IpF) · (α⊗ F) := [X(1), α⊗ Y ]F N = LX(1)(α) ⊗ Y + α⊗ [X(1), Y ]
(2.27)

defines a representation of F/IpF on Γ(∧iV ∗) ⊗C∞(V ) F(V ), compatible
with the differential d•, where [−,−]F N is the Frölicher-Nijenhuis bracket.
Consequently, there is a well-defined action on the cohomology groups.

iii) The F/IpF-action on Hi(Γ(∧•V ∗) ⊗C∞(V ) F(V ), d• ⊗ id) induced by the
F/IpF-action (2.27) is equivalent to the F/IpF-action on (Ei)p.
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Proof.

i) The fact that lin is a well-defined Lie algebra homomorphism was shown in
[AZ14, Section 4]. For the injectivity, we need to show that if a vector field
Y ∈ F(V ) vanishes quadratically, it can be written as a linear combination

Y =
r∑

i=1
f iXi,

where Xi ∈ F(V ), and f i(p) = 0 for i = 1, . . . , r. As F is a linear foliation,
we can take the Xi to be linear vector fields which are linearly independent
over R. Then

0 = Y (1) =
r∑

i=1
f i(0)Xi,

which implies that f i(0) = 0.

ii) This follows directly from the fact that lin is a Lie algebra homomorphism,
and that the Frölicher-Nijenhuis bracket satisfies the Jacobi identity. The
compatibility with the differentials follows from the fact that

[LX(1) , ιxi∂xi
] = ι[X(1),xi∂xi ] = 0,

as X(1) is linear.

iii) For this, we recall the isomorphism (2.26) as described in [Wei95]. Given
the projective resolutions (2.3) and (2.25), we can take the tensor product
to obtain a double complex

(Γ(∧•V ∗) ⊗C∞(V ) Γ(E•), d• ⊗ id, id ⊗ ∂•).

From the double complex, we can construct the total complex

(Tot(Γ(∧•V ∗) ⊗C∞(V ) Γ(E•), d• ⊗ id + id ⊗ ∂•).

Then the maps

id ⊗ ρ : Tot(Γ(∧•V ∗) ⊗C∞(V ) Γ(E•)) → Γ(∧•V ∗) ⊗C∞(V ) F(V )

and

evp ⊗ id : Tot(Γ(∧•V ∗) ⊗C∞(V ) Γ(E•)) → R ⊗C∞(V ) Γ(E•)

induce isomorphisms in cohomology. As both maps are compatible with
the F/IpF-actions, the isomorphisms in cohomology respect the F/IpF-
action as well.



THE ISOTROPY L∞-ALGEBRA IN A FIXED POINT 71

The proposition now allows us to compute invariants of the foliation F(V )
without needing an explicit resolution of F , as we do in the following example.

Example 2.4.4. Consider on V = R2 the foliation F1(V ) = ⟨x∂x, y∂x⟩C∞(V ).
Then by Lemma 2.4.1,

(E0)p := TorC∞(V )
0 (F(V ),R) = F1/IpF1.

For TorC∞(V )
1 (F(V ),R), a straightforward computation shows that the middle

cohomology of

Γ(∧2V ∗) ⊗C∞(V ) F(V ) Γ(V ∗) ⊗C∞(V ) F(V ) F(V )d2 d1 (2.28)

is one-dimensional, generated by the class of γ := dx⊗ y∂x − dy⊗x∂x. Observe
that this element is not exact in (2.28): although it can be written as

dx⊗ y∂x − dy ⊗ x∂x = d2(dx ∧ dy ⊗ ∂x)

in (2.4), ∂x ̸∈ F(V ). Moreover, any exact element in (2.28) must vanish at least
quadratically in the origin, which is not the case for γ.
Finally, it is easy to see that d2 is injective, so we now know that for any
minimal resolution (2.25), the space (E0)p is two-dimensional, the space (E1)p

is one-dimensional, and the spaces (Ei)p for i ≥ 2 are trivial. The Lie algebra
structure on (E0)p is the non-abelian two-dimensional Lie algebra, while the
action of (E0)p on (E1)p is trivial.

Example 2.4.5. We can modify the previous example to obtain a foliation which
is not linear: consider F2(V ) = ⟨(x+xy)∂x +y2∂y, y∂x⟩C∞(V ). It is not difficult
to see that F2(V ) is a projective C∞(V )-module. Consequently, for any minimal
resolution (2.25), (E0)p is two-dimensional, and (Ei)p = 0 for i ≥ 1. Although
it was already known that there exists no analytic diffeomorphism of V taking
the generators of F2(V ) to the generators of F1(V ) of the previous example (see
[GS68, Proposition 1.2]), the above argument shows that there does not even
exist a smooth diffeomorphism of V taking the C∞(V )-module F2(V ) to F1(V ),
showing that not even the germs of the foliations F1 and F2 are equivalent,
even though the modules generated by the first order approximations of the
generators around p ∈ V are equal. Of course, in this case the difference between
F1(V ) and F2(V ) can be seen by considering the dimension of the regular leaves:
for F1 they are 1-dimensional, while for F2 they are 2-dimensional.
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2.5 Appendix

2.5.1 Compatibility of rω with the differentials

In this section we use the notation from Section 2.2.4, and investigate whether
the left inverse rω of ϕω can be chosen to be a cochain map in some degrees,
which would simplify the brackets of the L∞-algebroid structure.

As the choice of rω in (2.16) is not unique, we investigate whether the left
inverse rω can be chosen to be compatible with the differentials, as this would
force J−,−K to be equal to {−,−}.
However, it is clear that this is not possible in all degrees: first of all, as rω

1 is not
only a left inverse, but the unique inverse, as ϕω

2 is an isomorphism. Hence, there
is no choice there. Then, the existence of r̃ω

2 : Γ(∧2V ∗ ⊗ ∧2V ∗) → Γ(∧3V ∗ ⊗ V )
such that

rω
1 ∂2 + d3r̃ω

2 = 0
implies that d2r

ω
1 ∂2 = 0, which is not the case.

Nevertheless, we consider the other degrees, as compatibility with the
differentials would simplify the binary and ternary brackets.
We start with the lowest degree: Let n = dimV . In degrees −n and −n + 1,
we get the following square

0 Γ(∧nV ∗ ⊗ V )

Γ(∧nV ∗ ⊗ ∧2V ∗) Γ(∧n−1V ∗ ⊗ ∧2V ∗)

ϕω
n

∂n

.

Given a left inverse r̃ω
n−1 : Γ(∧n−1V ∗ ⊗ ∧2V ∗) → Γ(∧nV ∗ ⊗ V ) of ϕω

n such that

r̃ω
n−1∂n = 0,

we note that the constant extension of the value at the origin r̃ω
n−1(0) is also a

left inverse of ϕω
n which satisfies

r̃ω
n−1(0)∂n = 0.

It therefore suffices to show that there exists no constant (in V ) left inverse
r̃ω

n−1 of ϕω
n such that

r̃ω
n−1∂n = 0.

Let µ ∈ ∧nV ∗, τ ∈ ∧2V ∗. Then we can view ∂n as an injective R-linear map

∂n : ∧nV ∗ ⊗ ∧2V ∗ → V ∗ ⊗ ∧n−1V ∗ ⊗ ∧2V ∗,
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as ∂n has linear coefficient functions, and r̃ω
n−1 extends by idV ∗ ⊗ r̃ω

n−1 to a map

idV ∗ ⊗ r̃ω
n−1 : V ∗ ⊗ ∧n−1V ∗ ⊗ ∧2V ∗ → V ∗ ⊗ ∧nV ∗ ⊗ V

by C∞(V )-linearity.
Now

idV ∗ ⊗ r̃ω
n−1∂n(µ⊗ τ) = 0

implies that
ei ⊗ ιei

(µ) ⊗ τ ∈ ker(idV ∗ ⊗ r̃ω
n−1).

However, as ker(idV ∗ ⊗ r̃ω
n−1) = V ∗ ⊗ ker(r̃ω

n−1), it follows that

ιei(µ) ⊗ τ ∈ ker(r̃ω
n−1)

for each i = 1, . . . , n.
These elements actually generate the entirety of ∧n−1V ∗ ⊗∧2V ∗, forcing r̃ω

n−1 =
0, contradicting the assumption that r̃ω

n−1ϕ
ω
n = id.

Now fix dimV = 4. The general case discussed above shows that there exists
no left inverse r̃ω

3 of ϕω
4 such that

d4r̃ω
3 ∂4 = 0.

We will show that there exists no sp(V, ω)-equivariant left inverse r̃ω
2 of ϕω

3
satisfying

d3r̃ω
2 ∂3 = 0.

The requirement that r̃ω
2 is sp(V, ω)-equivariant is natural, as ϕω

3 is. We follow
[FH91, Chapter 16] to determine the space of all sp(V, ω)-equivariant maps
∧2V ∗ ⊗ ∧2V ∗ → ∧3V ∗ ⊗ V , and then restrict to those which are left inverses
of ϕω

3 . For this, we decompose the respective spaces into irreducible sp(V, ω)-
representations:

Lemma 2.5.1.

R1 := ∧3V ∗ ⊗ V ∼= R ⊕W ⊕ S2(V )

R2 := ∧2V ∗ ⊗ ∧2V ∗ ∼= R⊕2 ⊕W⊕2 ⊕ S2(V ) ⊕ C,

where W = Ann(Rω) ⊆ ∧2V , and C is an irreducible representation not
isomorphic to R, W or S2(V ).

Now we would like to apply a variation of Schur’s lemma (see for instance
[Hum73]) to compute the space of sp(V, ω)-equivariant maps ∧2V ∗ ⊗ ∧2V ∗ →
∧3V ∗ ⊗ V . We first obtain:
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Lemma 2.5.2.

Homsp(V,ω)(R2, R1) ∼= Endsp(V,ω)(R)⊕2 ⊕ Endsp(V,ω)(W )⊕2 ⊕ Endsp(V,ω)(S2(V ))

∼= R2 ⊕ R2 ⊕ R.

Proof. By Schur’s lemma, the restriction of a map of representation to irreducible
factors is either 0, or an isomorphism, which proves the first isomorphism in the
statement. For the second isomorphism, we observe that when complexifying,
the representations

C,W ⊗R C, S2
C(V ⊗R C)

are irreducible sp(V ⊗R C, ω)-representations, where ω is now extended to a
C-bilinear skew-symmetric map

ω : V ⊗R C × V ⊗R C → C.

Moreover, it is easy to see that for any representation T , the natural map

Endsp(V,ω)(T ) ⊗R C → Endsp(V ⊗RC,ω)(T ⊗R C)

is an isomorphism. As the endomorphism ring of a complex irreducible
representation is C by Schur’s lemma, it follows that the endomorphism ring of
the real representations R,W, S2(V ) is R, concluding the proof of the lemma.

We explicitly construct the generators of Homsp(V,ω)(R2, R1): pick a basis
{ei}4

i=1 of V such that ω = e1 ∧ e3 + e2 ∧ e4, and let

πω = 1
2(e1 ⊗ e3 + e2 ⊗ e4 − e3 ⊗ e1 − e4 ⊗ e2) ∈ V ⊗ V.

Lemma 2.5.3. Let τ ∈ ∧2V ∗. Define

τ := τ − 1
2(τ(e1, e3) + τ(e2, e4))ω.
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Let τ1, τ2 ∈ ∧2V ∗. Then Homsp(V,ω)(R2, R1) is generated by the maps

p1(τ1 ⊗ τ2) = 1
4(τ1(e1, e3) + τ1(e2, e4))(τ2(e1, e3) + τ2(e2, e4))πω,

p2(τ1 ⊗ τ2) = (τ1 ∧ τ2)(e1, e3, e2, e4)πω,

q1(τ1 ⊗ τ2) = ((ω♭)−1 ∧ (ω♭)−1)(τ1)1
2(τ2(e1, e3) + τ2(e2, e4)),

q2(τ1 ⊗ τ2) = 1
2(τ1(e1, e3) + τ1(e2, e4))((ω♭)−1 ∧ (ω♭)−1)(τ2),

s(τ1 ⊗ τ2) = τ1((ω♭)−1(ek), ej)τ2(ek, el)ω−1(ej) · ω−1(el),

where p1, p2 correspond to the trivial representation, q1, q2 to W , and s to S2(V ).
Here · denotes the symmetric product in S2(V ), ∧3V ∗ ⊗ V is identified with
V ⊗ V via the volume form 1

2ω ∧ ω, and ∧2V and S2(V ) sit inside V ⊗ V as

v1 ∧ v2 7→ 1
2(v1 ⊗ v2 − v2 ⊗ v1),

v1 · v2 7→ 1
2(v1 ⊗ v2 + v2 ⊗ v1).

The lemma above allows us to formulate a condition under which

λ1p1 + λ2p2 + µ1p1 + µ2p2 + νs (2.29)

is a left inverse of ϕω
3 :

Lemma 2.5.4. (2.29) is a left inverse of ϕω
3 if and only if

λ1 = 2 − 10λ2,

µ1 = µ2 − 2,

ν = −2.

It is now straightforward to show that there is no value of λ2, µ2 ∈ R such
that the corresponding map r̃ω

2 = (2 − 10λ2)p1 + λ2p2 + (µ2 − 2)q1 + µ2q2 − 2s
satisfies

d3r̃ω
2 ∂3 = 0.

Consequently:
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Proposition 2.5.5. When dimV = 4, there exist no

r̃ω
2 : Γ(∧2V ∗ ⊗ ∧2V ∗) → Γ(∧3V ∗ ⊗ V ), r̃ω

3 : Γ(∧3V ∗ ⊗ ∧2V ∗) → Γ(∧4V ∗ ⊗ V )

satisfying
r̃ω

2 ∂3 + d4r̃ω
3 = 0.

Bibliography

[AS09] Iakovos Androulidakis and Georges Skandalis. The holonomy groupoid
of a singular foliation. J. Reine Angew. Math., 626:1–37, 2009.

[AZ14] Iakovos Androulidakis and Marco Zambon. Holonomy transformations
for singular foliations. Advances in Mathematics, 256:348–397, 2014.

[AZ16] Iakovos Androulidakis and Marco Zambon. Stefan–Sussmann
singular foliations, singular subalgebroids and their associated sheaves.
International Journal of Geometric Methods in Modern Physics, 2016.

[FH91] W. Fulton and W.F.J. Harris. Representation Theory: A First Course.
Graduate Texts in Mathematics. Springer New York, 1991.

[GS68] Victor W. Guillemin and Shlomo Sternberg. Remarks on a paper
of Hermann. Transactions of the American Mathematical Society,
130:110–116, 1968.

[Hum73] James E. Humphreys. Introduction to Lie algebras and representation
theory. Graduate Texts in Mathematics. Springer, New York, NY,
January 1973.

[KSM02] Y. Kosmann-Schwarzbach and K. C. H. Mackenzie. Differential
operators and actions of Lie algebroids. In Quantization, Poisson
brackets and beyond. London Mathematical Society regional meeting
and workshop on quantization, deformations, and new homological and
categorical methods in mathematical physics, Manchester, UK, July
6–13, 2001, pages 213–233. Providence, RI: American Mathematical
Society (AMS), 2002.

[Lav16] Sylvain Lavau. Lie infini-algébroides et feuilletages singuliers. PhD
thesis, 2016.

[Lav22] Sylvain Lavau. The modular class of a singular foliation. arXiv e-prints,
page arXiv:2203.10861, 2022.



BIBLIOGRAPHY 77

[LGLS20] Camille Laurent-Gengoux, Sylvain Lavau, and Thomas Strobl. The
universal Lie ∞-algebroid of a singular foliation. Doc. Math., 25:1571–
1652, 2020.

[LS93] Tom Lada and Jim Stasheff. Introduction to sh Lie algebras for
physicists. Int. J. Theor. Phys., 32(7):1087–1103, 1993.

[Sin22] Karandeep Jandu Singh. On the universal L∞-algebroid of linear
foliations. arXiv e-prints, page arXiv:2207.03278, 2022.

[Sus73] Hector J. Sussmann. Orbits of families of vector fields and integrability
of systems with singularities. Bull. Am. Math. Soc., 79:197–199, 1973.

[Vor10] Th. Voronov. Q-manifolds and higher analogs of Lie algebroids. In
XXIX workshop on geometric methods in physics, Białowieża, Poland,
June 27 – July 3, 2010. Selected papers based on the presentations
at the workshop, pages 191–202. Melville, NY: American Institute of
Physics (AIP), 2010.

[Wan17] Roy Wang. On Integrable Systems & Rigidity for PDEs with Symmetry.
arXiv e-prints, page arXiv:1712.00808, 2017.

[Wei95] C.A. Weibel. An Introduction to Homological Algebra. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1995.



Chapter 3

Stability of fixed points in
Poisson geometry and higher
Lie theory

This chapter contains the article [Sin22].

Abstract - We provide a uniform approach to obtain sufficient criteria for a
(higher order) fixed point of a given bracket structure on a manifold to be stable
under perturbations. Examples of bracket structures include Lie algebroids, Lie
n-algebroids, singular foliations, Lie bialgebroids, Courant algebroids and Dirac
structures in split Courant algebroids admitting a Dirac complement. We in
particular recover stability results of Crainic-Fernandes for zero-dimensional
leaves, as well as the stability results of higher order singularities of Dufour-
Wade.
These stability problems can all be shown to be specific instances of the following
problem: given a differential graded Lie algebra g, a differential graded Lie
subalgebra h of finite codimension in g and a Maurer-Cartan element Q ∈ h1,
when are Maurer-Cartan elements near Q in g gauge equivalent to elements of
h1?
We show that the vanishing of a finite-dimensional cohomology group associated
to g, h and Q implies a positive answer to the question above, and therefore
implies stability of fixed points of the geometric structures described above.

78
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3.1 Introduction

In differential geometry, there are various structures of infinitesimal nature
on a manifold M which induce a partition of M into immersed submanifolds
called leaves. Examples include Lie algebra actions, involutive distributions and
Poisson structures. These are all examples of Lie algebroids. A Lie algebroid
over a manifold M is a vector bundle A → M , equipped with a bundle map

ρ : A → TM

covering the identity on M , together with a Lie bracket on the space of sections
of A such that for every section x, y ∈ Γ(A) and f ∈ C∞(M), we have the
equality

[x, fy]A = ρ(x)(f)y + f [x, y]A.

This property together with the Jacobi identity for [−,−]A implies that ρ :
Γ(A) → X(M) is a Lie algebra map, therefore the image of ρ defines a singular
foliation on M . As the space of Lie algebroid structures on a vector bundle
A carries a topology, one can ask when a leaf L of a given Lie algebroid
structure (ρ, [−,−]A) is stable when perturbing the Lie algebroid structure.
More precisely:

Given a leaf L ⊆ M , when is it the case that every Lie algebroid structure near
(ρ, [−,−]A) has a leaf near L which is diffeomorphic to L?

For compact leaves L, this question was first answered in [CF10]. Here it was
shown that if the first cohomology of the Lie algebroid restricted to L with values
in a certain representation vanishes, then for every Lie algebroid structure near
the original one, there exists a family of leaves diffeomorphic to L. Moreover,
when A = T ∗M , the cotangent bundle of M , the authors prove a stronger result
for when the same conclusion holds when restricting the class of Lie algebroid
structures to only those coming from Poisson structures, as well as a separate
result which guarantees the existence of a family of leaves symplectomorphic to
a given one.
The results of [CF10] only depend on the first order approximation of (ρ, [−,−]A)
around the leaf L. Let L = {p} ⊆ M be a fixed point, that is, a zero-
dimensional leaf, and assume that ρ has a higher order of vanishing in p. Then
the cohomological assumptions of [CF10] will not be satisfied, hence nothing
can be concluded about the stability of p. In this case the result was extended
to give a criterium for stability of higher order fixed points of Lie algebroids
and Poisson structures in [DW06], which guarantees the existence of a family
of higher order fixed points near p.
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Main results

In this article we focus on the case of fixed points. In Section 3.2 we first
recall the stability result of [CF10] and [DW06] for first order fixed points of
Lie algebroids, and prove it directly in terms of Lie algebroid data, instead of
passing through the identification with fiberwise linear multivector fields on
the dual vector bundle. In Section 3.3.2 we show that the stability question
for zero-dimensional leaves is equivalent to a question about the comparison of
Maurer-Cartan elements of differential graded Lie algebras and Maurer-Cartan
elements of a chosen differential graded Lie subalgebra as explained below.
Using this reformulation as motivation, we state and prove the main theorem,
which gives a sufficient condition for the inclusion of the differential graded
Lie subalgebra to be locally surjective on equivalence classes of Maurer-Cartan
elements (Theorem 3.3.20). The rest of the article is dedicated to applying it in
various situations by making appropriate choices for the differential graded Lie
algebras involved. In Section 3.4 we apply the main theorem to obtain:

- the general result of [DW06] for Lie algebroids (Theorem 3.4.11),

- a stability result for (higher order) fixed points of Lie n-algebroids
(Theorems 3.4.23 and 3.4.30), with an application to singular foliations
(Section 3.4.5).

In Section 3.5 we apply the main theorem to obtain stability results for fixed
points within a subclass of structures, such as:

- (higher order) fixed points of Lie algebroid structures on a vector bundle
A∗, which form a Lie bialgebroid pair with a given Lie algebroid structure
on A (Theorem 3.5.6),

- (higher order) fixed points of Poisson structures compatible with a fixed
Nijenhuis tensor (Theorem 3.5.21),

- (higher order) fixed points of Courant algebroids (Theorem 3.5.36),

- fixed points of Dirac structures in split Courant algebroids admitting a
Dirac complement (Theorem 3.5.50).

The results are all of the same form: given a structure Q as above, and a (higher
order) fixed point p ∈ M of this structure, there will be a finite-dimensional
cohomology group associated to this structure and the (higher order) fixed
point. If this cohomology group vanishes, then for every neighborhood V of
p ∈ M , there exists a Cs-neighborhood U of the structure Q such that every
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Q′ ∈ U has a fixed point of the same kind in V . The precise value of s ∈ Z≥0
will depend on the type of structure and the order of the fixed point.

We approach these questions using the main theorem as follows. Let p ∈ M .

- The relevant structures are identified with Maurer-Cartan elements of a
certain differential graded Lie algebra (g, ∂, [−,−]) given by the sections
of some vector bundle.

- In here, we identify a differential graded Lie subalgebra h ⊆ g, for which
the Maurer-Cartan elements are those Maurer-Cartan elements of g for
which some given p ∈ M is a fixed point of desired type. Let Q ∈ h1

denote such a structure.

- g0 acts on g1 by the gauge action, as can be found in [Man04] for instance.
In our examples, this action is by vector bundle automorphisms Φ covering
a diffeomorphism ϕ of M . In particular, p ∈ M is a fixed point of a Maurer-
Cartan element Q′ gauge transformed by X ∈ g0 if and only if ϕ(p) ∈ M
is a fixed point of the untransformed Q′.

The question of stability of p can now roughly be formulated as follows:

Given a Maurer-Cartan element Q of h, when is it true that any Maurer-Cartan
element of g near Q is gauge equivalent to a Maurer-Cartan element of h?

Under some conditions on g, h and the gauge action, the most restrictive one
being that gi/hi is finite-dimensional for i = 0, 1, 2, we show that a sufficient
condition for a positive answer is that

H1(g/h, ∂ + [Q,−]) = 0.

Here ∂ + [Q,−] is the induced map on the quotients. In several examples, this
recovers known cohomology groups, and in all examples the chain complexes
will consist of finite-dimensional vector spaces.
Where possible, we also point out relations between various structures and the
cohomology groups that arise from them.
In a future work, we plan to explore the extent to which these results can be
generalised so that they may be applied to higher-dimensional leaves.
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3.2 A direct proof of stability of fixed points of Lie
algebroids

In this section we reprove the stability result of (first order) fixed points of Lie
algebroids using the approach of [DW06], writing it directly in Lie algebroid
data instead of passing through the identification with linear Poisson structures
on the dual vector bundle. This proof already contains the key arguments to
prove the main theorem of this article. We first give the definition of a Lie
algebroid.

Definition 3.2.1. Let M be a smooth manifold. A Lie algebroid over M is a
triple (A, ρ, [−,−]), where

i) A → M is a vector bundle,

ii) ρ : A → TM is a vector bundle map,

iii) [−,−] : Γ(A) × Γ(A) → Γ(A) is an R-bilinear skew-symmetric map,

such that

a) for all x, y ∈ Γ(A), f ∈ C∞(M), we have

[x, fy] = ρ(x)(f)y + f [x, y].

b) for all x, y, z ∈ Γ(A),

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Lemma 3.2.2. Property a) and b) imply that

ρ([x, y]) = [ρ(x), ρ(y)]

for all x, y ∈ Γ(A).

Recall that a Lie algebroid gives a partition of M in connected immersed
submanifolds called leaves, such that the tangent space to the leaf through a
point p coincides with the image of ρ at p.

Definition 3.2.3. Let M be a smooth manifold and let (A, ρ, [−,−]) be a Lie
algebroid. A point p ∈ M is a fixed point of (ρ, [−,−]) if ρp = 0.

Note that fixed points are exactly zero-dimensional leaves.
Above any point p ∈ M , the Lie algebra structure of Γ(A) induces the structure
of a Lie algebra on ker(ρp) called the isotropy Lie algebra.
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Lemma 3.2.4. Let (A, ρ, [−,−]) be a Lie algebroid over M , and let p ∈ M .
Let
x, y ∈ ker(ρp : Ap → TpM), and let x̃, ỹ ∈ Γ(A) be extensions of x, y respectively.
Then the element

µp(x, y) := [x̃, ỹ](p)
is well-defined and lies in ker(ρp). Moreover, the map

µp : ker(ρp) × ker(ρp) → ker(ρp)

satisfies the Jacobi identity, equipping ker(ρp) with a Lie algebra structure.

For the rest of this section, assume that p ∈ M is a fixed point of the Lie
algebroid (A, ρ, [−,−]). Denote by gp the isotropy Lie algebra at p. As a vector
space it is just Ap, while the Lie bracket is given as in Lemma 3.2.4.
The isotropy Lie algebra has a natural representation τ : gp → End(TpM) on
TpM , called the Bott representation or the linear holonomy representation. For
x ∈ gp, v ∈ TpM , it is defined by

τ(x)(v) = [ρ(x̃), ṽ](p) ∈ TpM, (3.1)

where x̃ ∈ Γ(A), ṽ ∈ X(M) are extensions of x and v respectively.
The cohomology of the isotropy Lie algebra gp with values in the linear holonomy
representation τ on TpM plays a vital role in Theorem 3.2.8 and will return
several times throughout the article, so we recall the definition of Lie algebra
cohomology.

Definition 3.2.5. Let g be a Lie algebra, and let σ : g → End(V ) be a
representation on a vector space V .

i) The Chevalley-Eilenberg complex is the cochain complex

(S(g∗[−1]) ⊗ V, dσ
CE),

where for α ∈ Sk(g∗[−1]) ⊗ V , v0, . . . , vk ∈ g, we have

dσ
CE(α)(v0, . . . ,vk) =

k∑
i=0

(−1)i+kσ(vi)(α(v0, . . . , v̂i, . . . , vk))

+
∑

0≤i<j≤k

(−1)i+j+kα([vi, vj ], v0, . . . , v̂i, . . . , v̂j , . . . , vk).

ii) When V = R and σ = 0, we denote by

(S(g∗[−1]), dCE)

the corresponding complex.
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The following lemma is easy to show:

Lemma 3.2.6.
(S(g∗[−1]), dCE)

is a differential graded commutative algebra, and for any representation σ : g →
End(V ), the Chevalley-Eilenberg complex

(S(g∗[−1]) ⊗ V, dσ
CE)

defines a differential graded module over this algebra.

For our purposes, the relevant part of the complex is in degrees 0, 1 and 2. In
these degrees, we denote the complex by

V g∗[−1] ⊗ V S2(g∗[−1]) ⊗ V,
d0 d1

with
d0(v)(x) = σ(x)(v), (3.2)

and
d1(α)(x, y) = −σ(x)(α(y)) + σ(y)(α(x)) + α([x, y]) (3.3)

for v ∈ V, α ∈ g∗[−1] ⊗ V, x, y ∈ g[1].
Denote the corresponding cohomologies by Hi

CE(g, V ) for i = 0, 1.

Remark 3.2.7.

i) This definition differs from the one which is mostly used by an overall
factor of (−1)k when α ∈ Sk(g∗[−1]) ⊗ V . This is because we choose to
write the complex using the shifted symmetric product rather than the
unshifted wedge product.

ii) Note that for Hi
CE(g, V ) to be defined for i = 0, 1, it is not necessary that

the bracket of g satisfies the Jacobi identity. It is only needed that the
bracket [−,−] : g × g → g exists, and that

σ([x, y]) = σ(x)σ(y) − σ(y)σ(x)

for x, y ∈ g.

The last thing we need to formulate the stability result for fixed points of Lie
algebroids is a topology on the space of Lie algebroid structures. It will be shown
in Section 3.4.1 that Lie algebroid structures on A are elements of the sections
of some vector bundle E, hence can be equipped with the weak Ck-topology
induced by the one on Γ(E). An element Q ∈ Γ(E) can be seen as a pair
(ρ, [−,−]), where ρ and [−,−] are as in Definition 3.2.1, without requirement
b). This is the description in terms of multiderivations as in [CM08].
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Theorem 3.2.8 ([CF10],[DW06]). Let M be a manifold and (A, ρ, [−,−]) be a
Lie algebroid. Let p ∈ M be a fixed point of (A, ρ, [−,−]). Let gp be the isotropy
Lie algebra at p. Assume that

H1
CE(gp, TpM) = 0.

Then for any open neighborhood U ⊆ M of p, there is a C1-neighborhood U of
(ρ, [−,−]) in the space of Lie algebroid structures such that for any (ρ′, [−,−]′) ∈
U there exists a family I ⊆ U of fixed points of (ρ′, [−,−]′) parametrized by an
open neighborhood of the origin of H0

CE(gp, TpM).

Proof. The setup of the proof will be similar to the proof of Theorem 1.2
of [DW06]. The only difference is that we work with the description of Lie
algebroids in terms of an anchor and a bracket, while the authors of [DW06]
work with a special class of Poisson structures on A∗.
As the statement is local in M , we may assume that M = V a finite-dimensional
real vector space, p = 0 ∈ V , and that A = gp × V is a trivial bundle.
The outline of the proof is as follows.

i) We construct a smooth map evQ : V → W = g∗[−1] ⊗ V , parametrized
continuously by elements of Q ∈ Γ(E) with the C1-topology, which
contains the Lie algebroid structures on A.

ii) We construct a smooth map Rq,Q : g∗[−1]⊗V = W → T = S2(g∗[−1])⊗V ,
parametrized continuously by (q,Q) ∈ V × Γ(E), where the second factor
has the C1-topology.

These maps will have the following properties: denoting by Q0 := (ρ, [−,−]),

a) evQ0(p) = 0, and (D(evQ0))p = −d0 : V → W , where d0 is defined in
equation (3.2) for the Bott representation τ . Moreover, if Q is a Lie
algebroid structure, evQ(q) = 0 if and only if q is a fixed point of Q.

b) Rq,Q(0) = 0 for every (q,Q) ∈ V × Γ(E), and (D(Rp,Q0))0 = d1, with d1
as in equation (3.3) for the Bott representation τ .

c) Whenever Q ∈ Γ(E) is a Lie algebroid structure and q ∈ V , we have

Rq,Q(evQ(q)) = 0 ∈ T.

The existence of the maps with these properties is sufficient to prove the theorem.
Before we construct the maps, we show how the theorem follows from these
properties. Let C be a complement to ker(d1) = im(d0) in W = g∗[−1] ⊗ V .
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First property b) implies that Rp,Q0 restricted to C is an immersion at 0 ∈ C as
C has trivial intersection with ker(d1 = (D(Rp,Q0))0). By Lemma 3.6.3, there
exists an open neighborhood O of 0 ∈ C, an open neighborhood S of p ∈ V and
a C1-neighborhood U2 of Q0 ∈ Γ(E) such that Rq,Q

∣∣
O

is an injective immersion
for Q ∈ U2 and q ∈ S.
Property a) implies that evQ0 intersects O ⊆ C transversely in p, as d0 =
(D(evQ0))p, and im(d0) = ker(d1) by the cohomological assumption. Therefore
by Lemma 3.6.1, there exists a C1-neighborhood of Q0 ∈ U1 ⊆ Γ(E) such that
for any Q ∈ U1, there exists a q ∈ S such that evQ(q) ∈ O.
By property c), for any Lie algebroid structure Q ∈ U = U1 ∩ U2, and any q ∈ V
we have

Rq,Q(evQ(q)) = 0.

By injectivity of Rq,Q restricted to O, combined with the fact that evQ(q) ∈ O,
it follows that

evQ(q) = 0,

or equivalently, q is a fixed point of Q. For the existence of the family of fixed
points, apply the final statement of Lemma 3.6.1, again using that Rq,Q is
injective restricted to O.
Now we define the maps.

i) For Q = (σ, [−.−]′), let
evQ : V → W

be defined by
evQ(v) = T ∗

v (σ)p ∈ W,

where Tv : V → V is the translation by v ∈ V . The continuous dependence
on Q ∈ Γ(E) holds by definition of the topology on Γ(E).

ii) Now let q ∈ V , and Q = (σ, [−,−]′) ∈ Γ(E). Define

Rq,Q : W → T

by

Rq,Q(α)(x, y) = −T ∗
q ([σ(x), α̃(ỹ)] − [σ(y), α̃(x̃)] − α([x̃, ỹ]′))p,

where α ∈ W , x, y ∈ gp, and the ·̃ indicates the extension of · to a
constant section. We postpone the proof of the continuous dependence on
(q,Q) ∈ V × Γ(E) to Section 3.4.1, as it will be shown more generally.

a) It is then clear that evQ0(p) = 0, and that q is a fixed point of Q if and
only if evQ(q) = 0. For the statement about the derivative of evQ0 note
that the translation map Tv : V → V is the time-1 flow of the constant
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vector field induced by v ∈ V , so for v ∈ V ∼= TpV, x ∈ Ap viewing both
as constant sections, we have

(D(evQ0))p(v)(x) = d

dt

∣∣∣∣
t=0

T ∗
tv(ρ)p(x) = [v, ρ(x)](p) = −d0(v)(x).

Here in the second to last equality we note that T ∗
−tv(ρ)p(x) is the

pushforward of the vector field ρ(x) by the diffeomorphism Ttv : V → V ,
which is the time t flow of the constant vector field v.

b) The properties regarding its value and derivative are immediate.

c) We note that

Rq,Q(evQ(q)) = −T ∗
q ([σ(x), σ(y)] − σ([x, y]′))p = 0.

Remark 3.2.9.

- Observe that for the proof it was only necessary that σ : Γ(A) → X(M)
preserves the brackets, and the full Jacobi identity for [−,−]′ was not
needed. So the theorem actually yields a stability criterium for almost
Lie algebroid structures on A (see [LGLS20], Definition 3.7). For almost
Lie algebroids, the requirement that the Jacobiator vanishes identically is
replaced by the requirement that it is C∞(M)-multilinear. In this case,
the fiber of A over a singular point p ∈ M carries a bracket (which does
not necessarily satisfy the Jacobi identity), and the action on TpM still
makes sense, so the cohomology H1

CE(g, TpM) is well-defined according
to remark 3.2.7ii).

- If 0 ∈ W is a regular value for evQ0 , the map R·,· would not be needed.
However, for dimensional reasons this can only happen if the Lie algebroid
A has rank 1. When the rank of A is 1, 0 being a regular value of evQ0 is
equivalent to the cohomological assumption.

- The map Rq,Q is linear. It is therefore unnecessary to use Lemma 3.6.3.
The linearity is a consequence of the fact that constant vector fields
commute, and in Theorem 3.3.20 there will be a quadratic term. As the
arguments are very similar we choose to give the general argument here,
and refer back to this in the proof of the main theorem.
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3.3 The main theorem

In this section, we state and prove a generalization of Theorem 3.2.8, which is
an algebraic statement about differential graded Lie algebras (Theorem 3.3.20).
We give some basic background on differential graded Lie algebras in Section
3.3.1. To motivate the generalization, we characterize Lie algebroid structures
in terms of certain elements in a graded Lie algebra, and show how the problem
of stability of singular points can be reformulated in terms of this graded Lie
algebra (Section 3.3.2). In Section 3.3, we then state the assumptions and prove
Theorem 3.3.20.

3.3.1 Differential graded Lie algebras

Definition 3.3.1. A differential graded Lie algebra is a triple (g, ∂, [−,−]),
where

i) g is a non-negatively graded real vector space,

ii) ∂ : g → g is a linear map of degree 1,

iii) [−,−] : g × g → g is a degree 0 graded skew-symmetric bilinear map,

satisfying

a) ∂ ◦ ∂ = 0,

b) ∂([x, y]) = [∂(x), y] + (−1)|x|[x, ∂(y)] for all x, y ∈ g where |x| denotes the
degree of x,

c) [[x, y], z] = [x, [y, z]] − (−1)|x||y|[y, [x, z]] for x, y, z ∈ g, where |x| and |y|
denote the degree of x and y respectively.

Any element Q ∈ g1 can be used to twist the differential ∂, by considering the
map

∂ + [Q,−].
The resulting triple (g, ∂ + [Q,−], [−,−]) still satisfies property b) and c). It
will in general not satisfy a), as

(∂ + [Q,−]) ◦ (∂ + [Q,−]) =
[
∂(Q) + 1

2 [Q,Q],−
]
.

This leads us to the following definition.
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Definition 3.3.2. Let (g, ∂, [−,−]) be a differential graded Lie algebra, and
Q ∈ g1 an element of degree 1. Q is a Maurer-Cartan element if

∂(Q) + 1
2 [Q,Q] = 0 ∈ g2.

Denote the set of all Maurer-Cartan elements of g by MC(g).

Convention 3.3.3. Although the examples we consider may have nonzero
negative degrees, we will implicitly set the negative degrees equal to zero. Note
that this is harmless: the bracket of two elements of non-negative degrees has
non-negative degree, and the differential respects this. We may use the bracket
on negative degrees to define certain subspaces however.

We start with some examples.

Example 3.3.4.

1) We can consider two extreme cases: if ∂ = 0, a differential graded
Lie algebra (g, 0, [−,−]) is just a graded Lie algebra. If [−,−] = 0, a
differential graded Lie algebra (g, ∂, 0) is just a cochain complex. In the
former case, a Maurer-Cartan element is simply a degree 1 element Q ∈ g1

such that [Q,Q] = 0. In the latter, Maurer-Cartan elements are precisely
1-cocycles.

2) Let M be a smooth manifold. Then (Γ(S(TM [−1])[1], 0, [−,−]SN ), where
[−,−]SN is the Schouten-Nijenhuis bracket, is the graded Lie algebra of
multivector fields on M . Its Maurer-Cartan elements are π ∈ Γ(∧2TM)
such that [π, π]SN = 0. These are precisely the Poisson bivectors.

3) Let M be a smooth manifold, and A a vector bundle over M . The space
of multiderivations has a graded Lie algebra structure as described in
Proposition 1 in [CM08], and its Maurer-Cartan elements are precisely
the Lie algebroid structures on A.
An equivalent description is also given in [CM08], in which the bracket
is more intuitive, which can be generalized to graded vector bundles.
Borrowing notation from graded geometry, of which the basics can be
found in [CS11], any vector bundle A → M gives rise to a graded manifold
A[1]. Its functions are given by the non-negatively graded commutative
algebra

C∞(A[1]) := Γ(S(A∗[−1])).
Now there is a natural graded Lie algebra associated to A[1]: it is the
graded Lie algebra of graded derivations of C∞(A[1]), which we denote by

X(A[1]) := DerR(C∞(A[1])).
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The graded commutator bracket

[X,Y ] = X ◦ Y − (−1)|X||Y |Y ◦X

equips X(A[1]) with a graded Lie algebra structure, where X,Y ∈ X(A[1])
of degrees |X|, |Y | respectively. It was first observed by A. Vaintrob [Vai97]
that a degree 1 derivation Q on C∞(A[1]) satisfying [Q,Q] = 2Q2 = 0 is
equivalent to the data of a Lie algebroid.

We will encounter more examples differential graded Lie algebras in this text.
Another construction on differential graded Lie algebras we will need is the
gauge action of g0 on g1. For nilpotent graded Lie algebras, the solution can be
written down as an infinite sum which terminates, see for instance the formula
in [Man04] above remark V.33. As the differential graded Lie algebras we will
encounter will come with a notion of differentiable paths, we take remark V.33
in [Man04] as a definition.

Definition 3.3.5. Let Q ∈ g1, and v ∈ g0. Consider the initial value problem
in g1 given by

d

dt
γt = [v, γt] − ∂(v), γ0 = Q. (3.4)

Assume that there exists a unique solution for t ∈ [0, 1]. Then the gauge action
of v on Q is defined to be γ1, and will be denoted by Qv.

This action satisfies a property similar to the exponential map for Lie groups.

Lemma 3.3.6. For t ∈ [0, 1], we have γt = Qtv. That is, the time t solution
of the initial value problem associated to v is equal to the time 1 solution of the
initial value problem associated to tv.

One of the main properties of the gauge action in [Man04] is that it should
preserve the Maurer-Cartan elements of g. While for the nilpotent case this can
be proven, we will assume this.

3.3.2 Lie algebroid stability in terms of a graded Lie algebra

In this section we will reformulate the problem of stability of fixed points of Lie
algebroid structures on A → M , as well as the solution provided by Theorem
3.2.8 completely in terms of operations on the graded Lie algebra X(A[1]), as
motivation for Theorem 3.3.20. We do this in four steps:

i) Identify Lie algebroid structures on A with Maurer-Cartan elements of
X(A[1]).
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ii) Identify a graded Lie subalgebra Xp,1(A[1]) ⊆ X(A[1]) whose Maurer-
Cartan elements are Lie algebroid structures for which a given p ∈ M is a
fixed point.

iii) Use the gauge action of X0(A[1]) to identify a neighborhood of
X0(A[1])/X0

p,1(A[1]) with a neighborhood of p ∈ M , so that q ∈ M
near p will be a fixed point of a Lie algebroid structure Q if and only if Q
is gauge equivalent to an element in X1

p,1(A[1]).

iv) Interpret the cohomology appearing in Theorem 3.2.8 in terms of X(A[1]),
Xp,1(A[1]) and Q ∈ X1

p,1(A[1]), which is the Lie algebroid structure we
start with.

We carry out the steps described above.

i) We start by recalling the bijection between Lie algebroid structures on a
vector bundle A in terms of an anchor and a bracket as in Definition 3.2.1
and Lie algebroid structures defined using degree 1 vector fields on the
graded manifold A[1], due to T. Voronov [Vor10].

Lemma 3.3.7. Let M be a manifold and (A, ρ, [−,−]A) a Lie algebroid.
Then the Lie algebroid differential

Q(α)(X0, . . . ,Xk) =
k∑

i=0
(−1)i+kρ(Xi)(α(X0, . . . , X̂i, . . . , Xk)) (3.5)

+
∑

0≤i<j≤k

(−1)i+j+kα([Xi, Xj ]A, X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

for α ∈ Γ(Sk(A∗[−1])), X0 ∈ Xk ∈ Γ(A) defines a degree 1 derivation of
the graded algebra Γ(S(A∗[−1])) satisfying [Q,Q] = 2Q2 = 0.
Conversely, let Q be a degree 1 derivation of Γ(S(A∗[−1])) satisfying
[Q,Q] = 0. Identifying ι : Γ(A) → X−1(A[1]) using the contraction map,
the structure maps

ρ(X)(f) = −[Q, ιX ](f),
[X,Y ]A = ι−1([[ιY , Q], ιX ])

for f ∈ C∞(M), X, Y ∈ Γ(A) equip A with a Lie algebroid structure.

From now on, a Lie algebroid (A, ρ, [−,−]A) will be denoted by (A,Q)
where Q is defined by equation (3.5).

ii) We now identify a graded Lie subalgebra of X(A[1]), whose Maurer-Cartan
elements are precisely those Lie algebroid structures for which a given
p ∈ M is a fixed point. For that we start with an observation:
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Lemma 3.3.8. Let (A,Q) be a Lie algebroid over M . Then p ∈ M is a
fixed point of Q if and only if

Q(C∞(M)) ⊆ IpΓ(A∗[−1]), (3.6)

where Ip denotes the vanishing ideal of p ∈ M .

Proof. For any X ∈ Γ(A) and f ∈ C∞(M) we have the equality

ρ(X)(f) = −ιX(Q(f)).

If Q(f) ∈ IpΓ(A∗[−1]), we get that ρ(X)(f) ∈ Ip. As X and f are
arbitrary, this implies that ρp = 0 ∈ A∗

p ⊗ TpM , so p ∈ M is a fixed point
of Q.
Conversely, if ρp = 0 ∈ A∗

p ⊗ TpM , then for every a ∈ Ap, Q(f)p(a) = 0.
As a ∈ Ap and f are arbitrary, Q(f)p = 0 hence Q(f) ∈ IpΓ(A∗[−1]).

Note that condition (3.6) defines a linear subspace of X1(A[1]). This
condition can be extended to other degrees, which then defines a graded
Lie subalgebra of (X(A[1]), 0, [−,−]):

Lemma 3.3.9. Let for p ∈ M , k = 0, . . . , rk(A)

Xk
p,1(A[1]) := {Q ∈ Xk(A[1]) | Q(C∞(M)) ⊆ IpΓ(Sk(A∗[−1]))}.

Then (Xp,1(A[1]), 0, [−,−]) is a graded Lie subalgebra of (X(A[1]), 0, [−,−]).

Proof. We need to show that

[Xk
p,1(A[1]),Xl

p,1(A[1])] ⊆ Xk+l
p,1 (A[1]),

which is a straightforward computation.

Remark 3.3.10. The subscript 1 indicates that it is the subspace of
vector fields which have prescribed vanishing behavior up to first order in
p. We will also encounter higher order vanishing conditions later.

iii) The next question is now how to keep track of a Lie algebroid structure
having a fixed point at q ̸= p ∈ M . This is where the gauge action of
X(A[1]) comes into play. We unpack the definition and construct the
solution of the gauge action.
Recall that in the proof of Theorem 3.2.8, we used the translation map
Tv, which was the time-1 flow of the constant vector field v ∈ X(V ) ∼=
C∞(V, V ). We now describe this in a coordinate free way. First we
describe X0(A[1]). The following lemma is well-known, for a proof we
refer to the appendix of [ZZ13].
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Lemma 3.3.11.

X0(A[1]) ∼= CDO(A∗) ∼= CDO(A).

Now the main point is that covariant differential operators are infinitesimal
vector bundle automorphisms, and can be integrated to vector bundle
automorphisms covering a diffeomorphism of the base M . For details and
the notation, see appendix 3.6.2.
Let D ∈ CDO(A), assume that σ(D) ∈ X(M) is complete and let

(Φ̃D
−t)∗ : Γ(S(A∗[−1])) → Γ(S(A∗[−1]))

be the automorphism associated to it. As X(A[1]) is the set of derivations
of the algebra C∞(A[1]) = Γ(S(A∗[−1])), any automorphism of C∞(A[1])
induces an automorphism of X(A[1]) by conjugation: for X ∈ X(A[1]), it
is defined by

(Φ̃D
−t)∗(X) = (Φ̃D

t )∗ ◦X ◦ (Φ̃D
−t)∗.

The automorphism (Φ̃D
−t)∗ interacts nicely with the subalgebra Xp,1(A[1]) :

Lemma 3.3.12. Let Q be a Lie algebroid structure, and p ∈ M . The
automorphism (Φ̃D

−1)∗ satisfies

(Φ̃D
−1)∗(Q) ∈ X1

p,1(A[1]) ⇐⇒ Q ∈ X1
ϕX

1 (p),1(A[1]).

Proof. Let f ∈ C∞(M). Then

(Φ̃D
−1)∗(Q)(f) = (Φ̃D

1 )∗(Q(f ◦ ϕX
−1)). (3.7)

Now for the implication ⇒, we assume that the left hand side lies in
IpΓ(A∗). It follows that Q(f ◦ ϕX

−1) lies in

(Φ̃D
−1)∗(IpΓ(A∗)) = IϕX

1 (p)Γ(A∗)

As (ϕX
−1)∗ is surjective, the implication follows.

Conversely, for the implication ⇐, it follows immediately that the right
hand side of (3.7) lies in IpΓ(A∗), proving the lemma.

It is not a coincidence that the notation for the automorphism of X(A[1])
associated to an element D ∈ CDO(A) ∼= X0(A[1]) resembles the notation
for the pushforward of a vector field along a diffeomorphism. The following
lemma shows that this automorphism is precisely the gauge transformation
by D∗:



94 STABILITY OF FIXED POINTS IN POISSON GEOMETRY AND HIGHER LIE THEORY

Lemma 3.3.13. Let Q ∈ X(A[1]), and D ∈ CDO(A) with symbol X.
Then whenever ϕX

t is defined, we have the equality

d

dt
(Φ̃D

−t)∗(Q) = [D∗, (Φ̃D
−t)∗(Q)]

with (Φ̃D
0 )∗(Q) = Q.

We can now rephrase the question of stability in a way which only involves
operations intrinsic to the graded Lie algebra X(A[1]). For simplicity, we
write X(A[1]) =: g, Xp,1(A[1]) =: h, and for Q ∈ g, D ∈ g0, we write

QD := (Φ̃D
−1)∗(Q).

The stability problem can now roughly be formulated as:
Let (A,Q) be a Lie algebroid over M , and p ∈ M a fixed point. When is
it the case that for any Lie algebroid structure Q′ near Q, there exists a
D∗ ∈ g0 such that the solution γ : [0, 1] → X1(A[1]) of the initial value
problem

d

dt
γt = [D∗, γt], γ0 = Q′

satisfies γ1 ∈ h1?
Note that if D ∈ h0 ⊆ g0, then QD ∈ h if and only if Q ∈ h. We may
therefore restrict our search for such a D∗ ∈ g0 to a complement of h0 in
g0. Such a complement is naturally isomorphic to TpM . For our purposes
however, it will be more convenient to work with the quotient g0/h0, with
a chosen R-linear splitting Σ : g0/h0 ∼= TpM → g0. As we are interested
in small neighborhoods of the point p and will only look at the action by
elements of the image of this splitting, the requirement that the symbol of
a differential operator is a complete vector field is not restrictive. Indeed,
on a coordinate chart where A trivializes, it is easy to see that the constant
extension of an element of TpM defines a splitting.

iv) Now that we have phrased the problem in this context, there is also a
way to phrase the answer provided by Theorem 3.2.8 in this context. In
fact, the cochain complex associated to the Bott representation arises
naturally:

Lemma 3.3.14. Let (A,Q) be a Lie algebroid over M , and p ∈ M a
fixed point, with isotropy Lie algebra gp. Let (X(A[1]), [Q,−], [−,−]) and
(Xp,1(A[1]), [Q,−], [−,−]) the associated differential graded Lie algebras.
For k = 0, . . . , rk(A) = r, there is a natural isomorphism

Xk(A[1])/Xk
p,1(A[1]) → Sk(g∗

p[−1]) ⊗ TpM
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which intertwines the differential [Q,−] induced on the quotient complex
(X(A[1])/Xp,1(A[1]), [Q,−]) with the Chevalley-Eilenberg differential dτ

CE

on the right hand side.

Proof. There is a short exact sequence of graded C∞(M)-modules in
which X(A[1]) sits:

0 C∞(A[1]) ⊗ Γ(A[1]) X(A[1]) C∞(A[1]) ⊗ X(M) 0,ι σ

where ι denotes the contraction and σ the restriction to C∞(M) ⊆
C∞(A[1]).
Note that this shows that X(A[1]) = Γ(E) for some graded vector bundle
E, as any connection on A splits the sequence. Now the graded Lie
algebra Xp,1(A[1]) also sits inside a short exact sequence of graded C∞(M)-
modules:

0 C∞(A[1]) ⊗ Γ(A[1]) Xp,1(A[1]) IpC
∞(A[1]) ⊗ X(M) 0ι σ

Consequently, on the quotients we get a short exact sequence of vector
spaces

0 0 X(A[1])/Xp,1(A[1]) S(g∗
p[−1]) ⊗ TpM 0,σ

proving the isomorphism.
Note that by construction of the Lie algebra structure on gp, we have for
any α ∈ C∞(A[1]) the equality

Q(α)(p) = dCE(α(p)) ∈ g∗
p.

Now if X ∈ X(A[1]) and α ∈ C∞(A[1]), then we know

dτ
CE(α(p)σ(X)) = dCE(α(p))σ(X) + (−1)|α|α(p)dτ

CE(σ(X))

= Q(α)(p)σ(X) + (−1)|α|α(p)dτ
CE(σ(X))

= σ([Q,αX]) + (−1)|α|α(p)(dτ
CE(σ(X)) − σ([Q,X])).

It therefore suffices to show the compatibility of differentials in degree 0.
Let X ∈ X0(A[1]), and f ∈ C∞(M).
We interpret elements of α ∈ g∗

p ⊗ TpM as R-bilinear maps α : gp ×
C∞(M) → R, satisfying

α(x, fg) = α(x, f)g(p) + f(p)α(x, g),
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for x ∈ gp, f, g ∈ C∞(M). Then for x ∈ gp, f ∈ C∞(M),

σ([Q,X])(x, f) = Q(X(f))(p)(x) −X(Q(f))(p)(x)

= ρp(x)(X(f)) −X(Q(f)(x̃))(p)

= [ρ(x̃), σ̃(X)](f)(p)

= dCE(σ(X))(x)(f).

Here the˜indicate some extension of x, σ(X) to sections of A and TM
respectively, and the second and third equality hold because p ∈ M is a
fixed point of Q.

For future reference, we state the short exact sequence as a lemma.

Lemma 3.3.15. There is a short exact sequence of graded C∞(M)-
modules

0 C∞(A[1]) ⊗ Γ(A[1]) X(A[1]) C∞(A[1]) ⊗ X(M) 0.ι σ

Moreover, any connection on A induces a splitting of the sequence.

This section can now be summarized to give an alternative formulation of
Theorem 3.2.8, which involves only operations on the graded Lie algebra. Let
g = X(A[1]), h = Xp,1(A[1]) as above, and let Σ : g0/h0 → g0 denote a splitting
of the quotient map.

Theorem 3.3.16 (Reformulation of Theorem 3.2.8). Let Q ∈ h be a Maurer-
Cartan element of h (hence of g). If

H1(g/h, [Q,−]) = 0,

then for every open neighborhood V of 0 ∈ g0/h0 ∼= TpM there exists a C1-open
neighborhood U of Q in the space of Maurer-Cartan elements of (g, 0, [−,−])
such that for any Q′ ∈ U , there exists a family I ⊆ V , parametrized by an open
neighborhood of the origin of H0(g/h, [Q,−]), with (Q′)Σ(v) ∈ h1 for all v ∈ I.

Under some assumptions on g and h, this theorem will hold in more generality.
Making appropriate choices for g and h will then yield similar results in other
contexts.
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3.3.3 The main theorem: assumptions and proof

In this section we state some assumptions on differential graded Lie algebras
h ⊆ g so that Theorem 3.3.16 holds in more generality, and prove this general
result.

Assumptions 3.3.17. Assume we have the following:

i) A differential graded Lie algebra (g, ∂, [−,−]),

ii) a differential graded Lie subalgebra (h, ∂, [−,−]) such that gi/hi is finite-
dimensional for i = 0, 1, 2,

iii) splittings σi : gi/hi → gi for i = 0, 1,

iv) a Maurer-Cartan element Q ∈ h1 ⊆ g1,

such that

a) gi for i = 0, 1, 2 are locally convex topological vector spaces such that the
projections pi : gi → gi/hi are continuous,

b) ∂ : g1 → g2 is continuous,

c) [−,−] : g1 × g1 → g2 is continuous,

d) There is an open neighborhood U of 0 ∈ g0/h0 such that for any Q ∈ g1,
the gauge action as in Definition 3.4 of σ0(v) for v ∈ U on Q is defined,
the assignment

U × g1 ∋ (v,Q′) 7→ (Q′)σ0(v) ∈ g1

is jointly continuous, and its class mod h1 depends smoothly on v ∈ U for
each fixed Q′.

e) For v ∈ U , Q′ ∈ g1 is Maurer-Cartan if and only if (Q′)σ0(v) is Maurer-
Cartan.

Remark 3.3.18. The choice of Q implies that (g, ∂ + [Q,−]) is a cochain
complex, with (h, ∂ + [Q,−]) as a subcomplex. We can therefore take the
quotient complex which we denote by (g/h, ∂ + [Q,−]).

The following lemma gives a sufficient condition for condition e) of assumptions
3.3.17 to be satisfied. In particular, the lemma applies when g is degreewise
given by the sections of some vector bundle, and the bracket [−,−] is a first
order bidifferential operator.
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Lemma 3.3.19. Let U ⊆ g0/h0 as in d) of assumptions 3.3.17. If v ∈ U and
the initial value problem

d

dt
γt = [σ0(v), γt], γ0 = 0 ∈ g2, (3.8)

has only the constant solution γt ≡ 0 ∈ g2, then (Q′)σ0(v) ∈ g1 is a Maurer-
Cartan element if and only if Q′ ∈ g1 is.

Proof. Let α : [0, 1] → g1 be a solution to equation (3.4), where α0 = Q′ is a
Maurer-Cartan element. The expression

γt := ∂αt + 1
2[αt, αt]

then satisfies the initial value problem (3.8), hence must be identically 0.

We can now state the main theorem, which roughly states that given a Maurer-
Cartan element Q ∈ h1, if a certain cohomology group vanishes, every Maurer-
Cartan element Q′ of g near Q is gauge equivalent to a Maurer-Cartan element
of h. Moreover, it also describes the amount of different gauge equivalences that
take Q′ into h.

Theorem 3.3.20. Assume that we are in the setting as described in assumptions
3.3.17. Assume that

H1(g/h, ∂ + [Q,−]) = 0.

Then for every open neighborhood V of 0 ∈ U there exists an open neighborhood
U ⊆ MC(g) of Q such that for any Q′ ∈ U there exists a family I in V
parametrized by an open neighborhood of 0 ∈ H0(g/h, ∂ + [Q,−]) with (Q′)σ(v) ∈
h1 for v ∈ I.

Proof. The proof setup is similar to the proof of Theorem 3.2.8, the difference
being in the maps which are used. We repeat the key steps of the proof.

i) Construct a smooth map evQ′ : V → g1/h1 depending continuously on
Q′ ∈ g1,

ii) construct a smooth map Rv,Q′ : g1/h1 → g2/h2 depending continuously
on (v,Q′) ∈ V × g1,

satisfying
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a) evQ(0) = 0 ∈ g1/h1, and (D(evQ))0 = −(∂ + [Q,−]) : g0/h0 ∼= T0V →
T0g

1/h1 ∼= g1/h1. Moreover, (Q′)σ0(v) ∈ h1 if and only if evQ′(v) = 0 ∈
g1/h1.

b) Rv,Q′(0) = 0 ∈ g2/h2 for every (v,Q′) ∈ V × g1, and (D(R0,Q))0 =
∂ + [Q,−] : g1/h1 → g2/h2.

c) Whenever Q′ ∈ g1 is Maurer-Cartan, for every v ∈ g0/h0 we have:

Rv,Q′(evQ′(v)) = 0 ∈ g2/h2.

We recall the way the result follows from these properties. Let C be a complement
to

ker(∂ + [Q,−] : g1/h1 → g2/h2) = im(∂ + [Q,−] : g0/h0 → g1/h1)

in g1/h1.
First property b) implies that R0,Q restricted to C is an immersion at 0 ∈ C as
C has trivial intersection with ker(∂ + [Q,−] : g1/h1 → g2/h2 = (D(R0,Q))0).
By Lemma 3.6.3, there exists an open neighborhood O of 0 ∈ C, an open
neighborhood S of 0 ∈ V and a neighborhood U2 of Q ∈ g1 such that Rv,Q′

∣∣
O

is an injective immersion for Q′ ∈ U2 and v ∈ S, where we use the continuous
dependence of R on the parameters (v,Q′) ∈ V × g1.
Property a) implies that evQ intersects O ⊆ C transversely in 0, as

∂ + [Q,−] : g0/h0 → g1/h1 = −(D(evQ))0,

and

ker(∂ + [Q,−] : g1/h1 → g2/h2) = im(∂ + [Q,−] : g0/h0 → g1/h1)

by the cohomological assumption. Therefore by Lemma 3.6.1, there exists a
neighborhood U1 of Q ∈ g1 such that for any Q′ ∈ U1, there exists a v ∈ S such
that evQ′(v) ∈ O.
By property c), for any Maurer-Cartan element Q′ ∈ U = U1 ∩ U2, and any
v ∈ V we have

Rv,Q′(evQ′(v)) = 0.
By injectivity of Rv,Q′ restricted to O, combined with the fact that evQ′(v) ∈ O,
it follows that

evQ′(v) = 0,
or equivalently, (Q′)σ0(v) ∈ h1. For the existence of the family of fixed points,
apply the final statement of Lemma 3.6.1, again using that Rv,Q′ is injective
restricted to O.
We define the maps.
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i) Let Q′ ∈ g1. Then for v ∈ V , we set

evQ′(v) = (Q′)σ0(v) + h1.

Then by assumption on the gauge action, the map depends continuously
on Q′ and smoothly on v ∈ V .

ii) Next, for (v,Q′) ∈ V × g1, Q̂+ h1 ∈ g1/h1 we set

Rv,Q′(Q̂+ h1) = ∂(Q̂) + [(Q′)σ0(v) − σ1((Q′)σ0(v) + h1), σ1(Q̂+ h1)]

+ 1
2 [σ1(Q̂+ h1), σ1(Q̂+ h1)] + h2.

a) The properties regarding the value of evQ′ hold by definition. For the
differential, we compute for v ∈ g0/h0 ∼= T0V

d

dt

∣∣∣∣
t=0

evQ(tv) = d

dt

∣∣∣∣
t=0

(Q)tσ0(v) + h1

=
[
σ0(v), Qtσ0(v)

]
− ∂(v)

∣∣∣∣
t=0

+ h1

= [σ0(v), Q] − ∂(v) + h1

= −∂ + [Q,−](v).

b) The properties regarding the values and derivatives of Rv,Q′ are immediate.

c) Finally we compute for Q′ ∈ g1, v ∈ V , we compute. Let X = (Q′)σ0(v),
and let X := X + h1.

Rv,Q′(evQ′(v)) =∂ (X) +
[
X − σ1(X), σ1(X)

]
+ 1

2

[
σ1(X), σ1(X)

]
+ h2

=∂ (X) +
[
X − σ1(X), σ1(X)

]
+ 1

2

[
σ1(X), σ1(X)

]
+ 1

2

[
X − σ1(X), X − σ1(X)

]
+ h2

=∂ (X) + 1
2

[
X − σ1(X) + σ1(X), X − σ1(X) + σ1(X)

]
=∂ (X) + 1

2 [X,X] + h2,

which vanishes if Q′ is a Maurer-Cartan element. Here the second equality
holds because X − σ1(X + h1) ∈ h1, and [h1, h1] ⊆ h2.
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Remark 3.3.21. We start with a couple of remarks, highlighting the differences
with the proof of Theorem 3.2.8.

i) The map ∂ does not appear in Theorem 3.2.8. As the input of Theorem
3.3.20 consists of a differential graded Lie algebra, and a Maurer-Cartan
element Q to start with, when the differential is an inner derivation of
the graded Lie algebra one can take ∂ = 0, and look at Maurer-Cartan
elements near Q rather than Maurer-Cartan elements of the differential
graded Lie algebra (g, [Q,−], [−,−]) near 0 ∈ g1. One reason to do this is
that the initial value problem for the gauge equation is homogeneous. As
we will see in Section 3.5.3, this cannot be done if ∂ is not inner.

ii) The role of σ0 and σ1 in the case of Theorem 3.2.8 was to extend elements
v ∈ TpM and ρ ∈ A∗

p ⊗TpM to constant sections of their respective vector
bundles. This explains why the map Rv,Q′ was linear in that example: the
pair (ρ, [−,−]) defined by a constant anchor and a zero bracket satisfies
the axioms of a Lie algebroid, hence the second term is identically zero.

iii) Note that although σ1 appears in the proof, it does not appear in the
statement. It is however necessary: as h is not an ideal, but only a graded
Lie subalgebra, the quotients do not inherit a graded Lie algebra structure.

iv) The requirement that [−,−] : g1 × g1 → g2 is continuous is needed to
show that

R : U × g1 → C∞
(
g1/h1, g2/h2

)
(v,Q′) 7→ Rv,Q′

is continuous. This condition can be replaced by a different condition
which is easier to check, and is satisfied in our applications. We give it in
Lemma 3.3.22 below.

v) Marco Zambon pointed out that Theorem 3.3.20 has a deformation
theoretic interpretation. The inclusion i : (h, ∂, [−,−]) ↪→ (g, ∂, [−,−]) is
a map of differential graded Lie algebras, hence induces a map on the
level of Maurer-Cartan sets

iMC : MC(h) → MC(g),

and on the level of Maurer-Cartan varieties

iMC : MC(h)/h0 → MC(g)/g0.
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The cohomological assumption H1(g/h, ∂ + [Q,−]) = 0 implies that the
induce map on the degree 1 cohomology

H1(i) : H1(h, ∂ + [Q,−]) → H1(g, ∂ + [Q,−])

is surjective by the long exact sequence associated to the short exact
sequence of cochain complexes

0 (h, ∂ + [Q,−]) (g, ∂ + [Q,−]) (g/h, ∂ + [Q,−]) 0.i

As H1(h, ∂ + [Q,−]) and H1(g, ∂ + [Q,−]) morally play the role of the
tangent spaces to the respective Maurer-Cartan varieties at Q with H1(i)
playing the role of the differential of i, Theorem 3.3.20 turns a stronger
version of surjectivity of H1(i) into (local) surjectivity of iMC .

vi) It would be interesting to know if the requirement H1(g/h, ∂ + [Q,−]) = 0
can be weakened to the surjectivity of H1(i).

vii) Theorem 3.3.20 only yields a sufficient condition, and not a necessary one.
In some places of the text we comment on this.

viii) By modifying the maps ev and R, we can generalize this result to the
case where g is an L∞-algebra, and h a strict L∞-subalgebra. We will
elaborate on this in future work.

ix) If there exists a subspace K ⊆ ker(∂ + [Q,−] : g1/h1 → g2/h2) such that
for any Maurer-Cartan element Q′ ∈ MC(g), Q′ +h1 ∈ K, we can replace
H1(g/h, ∂ + [Q,−]) in the hypothesis by

H1
red := K

im(∂ + [Q,−] : g0/h0 → K)
,

and the conclusion remains true. Observe that the space we quotient
by is well-defined: As by assumption Q is a Maurer-Cartan element, so
is Qtσ0(v) for all t ∈ R, v ∈ g0/h0, and the differential ∂ + [Q,−] is the
t-derivative at t = 0.

x) In applications, we will often only specify h in degrees 0, 1 and 2. To
complete this into a differential graded Lie subalgebra, we can take hi = gi

for i > 2.

There is a simpler condition than the continuity of [−,−] : g1 × g1 → g2 which
guarantees the continuity of

R : U × g1 → C∞
(
g1/h1, g2/h2

)
where U is as in assumptions 3.3.17iv).
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Lemma 3.3.22. Assume that there exists a subspace F ⊆ g1 such that

- F has finite codimension in g1,

- pF : g1 → g1/F is continuous,

- The bracket [−,−] : g1 × g1 → g2/h2 factors through [−,−] : g1/F ×
g1/F → g2/h2.

Then the map R : U × g1 → C∞ (g1/h1, g2/h2) is continuous, when the right
hand side carries the C1-topology.

Proof. Note first that because the assignment U × g1 ∋ (v,Q′) 7→ (Q′)σ0(v)

is continuous, it is sufficient to show that the restriction of R to {0} × g1 is
continuous. Further, while the map R is not linear in g1, it is not very far from
it, as it is affine. So continuity of R is equivalent to the continuity of the map

R−R0,0 : {0} × g1 → C∞(g1/h1, g2/h2).

This map takes values in Hom(g1/h1, g2/h2), the linear maps, and is given by

(R0,Q′ −R0,0) = [Q′ − σ1(Q′ + h1), σ1(−)] + h2

= [pF (Q′ − σ1(Q′ + h1), pF (σ1(−))] ∈ g2/h2,

which is the composition of a continuous linear map pF with a linear map
between finite-dimensional vector spaces, hence continuous.

Remark 3.3.23. A way to think about Lemma 3.3.22 is as follows: given a
manifold M , the graded Lie algebra g = X•(M)[1] of multivector fields and a
point p ∈ M we can take h := IpX

•(M)[1]. Then, gi/hi ∼= ∧i+1TpM , and the
quotient map is simply the evaluation at p ∈ M . To compute the value of the
Schouten-Nijenhuis bracket [π1, π2]SN of bivector fields π1, π2 ∈ X2(M) in p
however, it is not sufficient to know the values of π1, π2 at p ∈ M : we also need
to know the value of their first derivatives. In other words, we need to know
the equivalence class of π1, π2 mod I2

pX
2(M), which could be taken as F .

3.4 Higher order fixed points of Lie (n-)algebroids

In this section we give some applications of Theorem 3.3.20. We first apply it to
obtain a stability result for higher order fixed points of Lie algebroids (Theorem
3.4.11), which we then show to be equivalent to Theorem 1.3 of [DW06].
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We then apply it to obtain a stability result for (higher order) fixed points of
Lie n-algebroids (Theorems 3.4.23 and 3.4.30).

The results for Lie n-algebroids can then be applied to singular foliations, and
we obtain a stability result (Proposition 3.4.42) and a formal rigidity result
(Corollary 3.4.46) for linear singular foliations.

3.4.1 Higher order fixed points of Lie algebroids

Let (A,Q) be a Lie algebroid over the manifold M . The first application will
be Theorem 1.3 of [DW06].
This theorem yields a cohomological criterium for stability of a higher order
fixed point of a Lie algebroid, which we define below.

3.4.1.1 The ingredients

In this section we show that we are in the setting of assumptions 3.3.17.

i) As we still deal with Lie algebroid structures, we take the graded Lie
algebra

(gLA = X(A[1]), 0, [−,−]).

ii) We now define the graded Lie subalgebra of gLA which contains the Lie
algebroid structures with a higher order fixed point p ∈ M .

Definition 3.4.1. Let p ∈ M , j ≥ −1, k ≥ 0 and let A be a vector bundle.
Define

Xj
p,k(A[1]) := {δ ∈ Xj(A[1]) |δ(C∞(M)) ⊆ Ik

p Γ(Sj(A∗[−1])),

δ(Γ(A∗[−1])) ⊆ Ik−1
p Γ(Sj+1(A∗[−1]))},

where Ip ⊆ C∞(M) is the ideal of functions vanishing at p.

These subspaces behave well with respect to the graded commutator of
vector fields, extending Lemma 3.3.9. We leave the proof to the reader.

Lemma 3.4.2. For p ∈ M , j1, j2 ≥ 0, k1, k2 ≥ 0, we have

[Xj1
p,k1

(A[1]),Xj2
p,k2

(A[1])] ⊆ Xj1+j2
p,k1+k2−1.

Remark 3.4.3. As the numbers k1, k2, k1 + k2 − 1 represent the order
to which elements of the respective spaces vanish at p in a certain sense,
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Lemma 3.4.2 is not too surprising. It is an extension of the fact that
given vector fields X,Y ∈ X(M) vanishing to order K1,K2 ≥ 0 in a point
respectively, their Lie bracket [X,Y ] vanishes to order K1 +K2 − 1.

Corollary 3.4.4. For p ∈ M ,gLA(p, k) :=
rk(A)⊕
j=0

Xj
p,j(k−1)+1(A[1]), 0, [−,−]


is a graded Lie subalgebra of (X(A[1]), 0, [−,−]).

We now have a concise way to define fixed points of higher order.

Definition 3.4.5. Let (A,Q) be a Lie algebroid over M , p ∈ M , k ≥ 1.
We say p is a fixed point of order k of Q if Q ∈ X1

p,k(A[1]).

Remark 3.4.6.
- In classical terms, this means that ρ(x) ∈ Ik

pX(M), [x, y] ∈ Ik−1
p Γ(A)

for every x, y ∈ Γ(A), which is the same assumption as in [DW06].
- The requirement on the bracket is necessary: one way to see this is

by noting that without a requirement on the “vertical part” of the
vector fields in Xj

p,s(A[1]) for j ≥ 0, s ≥ 0, Lemma 3.4.2 would not
be true.

- In classical terms, another motivation for this assumption arises using
the structure equations of a Lie algebroid. As for any x, y ∈ Γ(A),

ρ([x, y]) = [ρ(x), ρ(y)],

the right hand side lies in I2k−1
p X(M), if ρ(x), ρ(y) ∈ Ik

pX(M). One
way to make sure that the same holds for the left hand side, is to
require that [x, y] ∈ Ik−1

p Γ(A).

We therefore obtain a graded Lie subalgebra gLA(p, k) ⊆ gLA correspond-
ing to Lie algebroid structures for which p ∈ M is a fixed point of order k.
The cochain spaces of the relevant complex will consist of gLA/gLA(p, k).
We will give a description of these vector spaces, proving that the quotients
gi

LA/g
i
LA(p, k) are finite-dimensional for i = 0, 1, 2. Note that Lemma

3.3.15 extends to gLA(p, k):

Lemma 3.4.7. For j, k ≥ 0, let r := j(k − 1). Let V := A[1], and
V ∗ = A∗[−1]. There is a short exact sequence of C∞(M)-modules:

0 Ir
pΓ(Sj+1(V ∗) ⊗ V ) Xj

p,r+1(V ) Ir+1
p Γ(Sj(V ∗) ⊗ TM) 0ι σ ,

where tensor products are over C∞(M).
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Consequently, the cochain spaces gLA/gLA(p, k) sit inside a short exact
sequence:

Corollary 3.4.8. Using notation from Lemma 3.4.7, there is a short
exact sequence

0 Jr−1
p (Sj+1(V ∗) ⊗ V ) Xj(V )/Xj

p,r+1(V )

Jr
p (Sj(V ∗) ⊗ TM) 0

ῑ

σ̄
,

where for a vector bundle E and a positive integer l,

J l
p(E) := Γ(E)/I l+1

p Γ(E)

are the l-jets of E at p. In particular, the cochain spaces are finite
dimensional vector spaces.

The differential however, does not restrict to the outer parts of the
sequence.

Remark 3.4.9. For k = 1, we have r = 0, and we are back in the setup
of Section 3.2.

iii) By restricting the graded Lie algebra to a sufficiently small coordinate
neighborhood of the point p ∈ M over which A trivializes, we can
choose splittings σi : gi

LA/g
i
LA(p, k) → gi

LA for i = 0, 1 by lifting jets
to polynomial sections.

iv) Now pick a Lie algebroid structure Q such that p ∈ M is a fixed point of
order k, i.e. a Maurer-Cartan element Q ∈ g1

LA(p, k).

We now check that the data above satisfies assumptions 3.3.17.

a) As each of the degrees of gLA are the sections of some vector bundle we
take various Cs-topologies.

- On g0
LA, take the C∞-topology,

- On g1
LA, take the C2k−1-topology,

- On g2
LA, take the C2k−2-topology.

These choices make the projections continuous.

b) The differential is identically zero, hence is continuous.
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c) This follows from a local computation, where it is crucial that for X,Y ∈
g1

LA, the (2k − 2)-jet of [X,Y ] depends bilinearly on the (2k − 1)-jets of
X and Y .

d) As the gauge action for gLA is given by the flow of some vector field,
the choice of the splittings above implies that it is defined for any v ∈
g0

LA/g
0
LA(p, k).

Finally,

Lemma 3.4.10. The gauge action g0
LA/g

0
LA(p, k) × g1

LA → g1
LA is

continuous.

Proof. We need to show that for (v,Q1) ∈ g0
LA/g

0
LA(p, k) × g1

LA, any
compact set K ⊆ M , and ϵ > 0, there is a compact set K ′ ⊆ M , ϵ′ > 0
and δ > 0 with the property that if

∥Q1 −Q2∥K′,2k−1 < ϵ′, ∥v − w∥ < δ,

we have
∥Qσ0(v)

1 −Q
σ0(w)
2 ∥K,2k−1 < ϵ,

where ∥·∥K,2k−1 denotes the C2k−1-seminorm associated to the compact
set K.
Note that

∥Qσ0(v)
1 −Q

σ0(w)
2 ∥K,2k−1 ≤∥Qσ0(v)

1 −Q
σ0(w)
1 ∥K,2k−1

+ ∥(Q1 −Q2)σ0(w)∥K,2k−1.

By uniform continuity of Q1 restricted to K, there exists δ > 0 such that
the first term is at most ϵ

2 if ∥v−w∥ < δ. Recall that the gauge action by
σ0(u) is given by some vector bundle automorphism of g1

LA, and vector
bundle automorphisms induce continuous maps on the space of sections.
Hence there exists some constant C > 0, such that for K ′ = ϕ(Bv(δ) ×K)

∥(Q1 −Q2)σ0(w)∥K,2k−1 ≤ C∥Q1 −Q2∥K′,2k−1.

Here ϕ : g0
LA/g

0
LA(p, k)×K → M is defined for (w, x) ∈ g0

LA/g
0
LA(p, k)×K

by
ϕ(w, x) = ϕw(x).

Here ϕw is the time-1 flow on M of the symbol of the element σ0(w),
using that ϕ is continuous.
Setting ϵ′ = ϵ

2C then yields the result.

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.
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3.4.1.2 Applying the main theorem

Now that all assumptions are satisfied, taking gLA = X(A[1]), gLA(p, k) =⊕rk(A)
i=0 Xi

p,i(k−1)+1(A[1]), the main theorem implies:

Theorem 3.4.11. Let (A,Q) be a Lie algebroid over M . Let p ∈ M be a fixed
point of order k ≥ 1, that is, Q ∈ gLA(p, k). Assume that

H1(gLA/gLA(p, k), [Q,−]) = 0.

Then for every open neighborhood U of p ∈ M , there exists a C2k−1-neighborhood
U of Q such that for any Lie algebroid structure Q′ ∈ U there is a family I in
U of fixed points of order k of Q′ parametrized by an open neighborhood of

0 ∈ H0(gLA/gLA(p, k), 0Q).

3.4.1.3 Equivalence with the Dufour-Wade stability theorem for Lie
algebroids

In this section we compare Theorem 3.4.11 with Theorem 1.3 of [DW06]. We
will show that Theorem 3.4.11 is equivalent to Theorem 1.3 of [DW06]. The
conclusions of the theorems are equivalent so we will show that the cohomological
assumptions are also equivalent. The theorem was originally proven in [DW06]
using a special kind of multivector fields on A∗ rather than vector fields on A[1],
and most notably, the differentials are not the same.
The first difference can be quite easily explained: the graded Lie algebra
multivector fields on A∗ which are fiber-wise linear [CM08, Section 4.9] are
canonically isomorphic to the graded Lie algebra of multiderivations on A, and
the same holds for vector fields on A[1] [CM08, Section 2.5].
The second difference is that we work with a quotient of the vector fields on
A[1], whereas in [DW06] the authors work with representatives of the classes in
the quotients, namely the multivector fields on A∗, which are fiber-wise linear,
and polynomial in coordinates on M = V . However, even when making these
identifications, the differential

[Q,−] : gLA/gLA(p, k) → gLA/gLA(p, k)

and the differential of [DW06] on the complexes do not agree. We want to show
that the vanishing of the respective cohomologies are equivalent conditions. To
see this, we first do an intermediate step, which will double as a more convenient
way to check the cohomological hypothesis of Theorem 3.4.11.
The complex

X0(A[1])/X0
p,1(A[1]) X1(A[1])/X1

p,k(A[1]) X2(A[1])/X2
p,2k−1(A[1])[Q,−] [Q,−]
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has a finite descending filtration. Indeed: let for t = 0, . . . , k (omitting the A[1]
for convenience):

F t(X0/X0
p,1) :=

{
X0/X0

p,1 t = 0, . . . , k − 1
0 t = k

,

F t(X1/X1
p,k) := X1

p,t/X
1
p,k,

F t(X2/X2
p,2k−1) := X2

p,k−1+t/X
2
p,2k−1.

The differentials preserve this filtration, so we obtain k complexes on the graded
quotient: for t = 0, . . . , k − 2 we get

0 X1
p,t/X

1
p,t+1 X2

p,t+k−1/X
2
p,t+k

gr([Q,−])
, (3.9)

and for t = k − 1 we have

X0/X0
p,1 X1

p,k−1/X
1
p,k X2

p,2k−2/X
2
p,2k−1.

gr([Q,−]) gr([Q,−]) (3.10)

Denote the corresponding cohomology groups by

grtH
1(gLA/gLA(p, k), [Q,−]) (3.11)

for t = 0, . . . , k − 1. The vanishing of these cohomologies is equivalent to the
vanishing of H1(gLA/gLA(p, k), 0Q).

Proposition 3.4.12.

H1(gLA/gLA(p, k), [Q,−]) = 0 ⇐⇒ grtH
1(gLA/gLA(p, k), [Q,−]) = 0

for t = 0, . . . , k − 1.

Proof. “ =⇒ ” The key observation is that we can linear splittings of the
sequences

0 Xi
p,t+1 Xi

p,t Xi
p,t/X

i
p,t+1 0

for i = 1, t = 0, . . . , k − 1, and i = 2, t = k − 1, . . . , 2k − 2. This gives rise to
(filtered) linear isomorphisms

Xi
p,(i−1)(k−1)/X

i
p,k+(i−1)(k−1)

∼=
k−1⊕
t=0

Xi
p,t+(i−1)(k−1)/X

i
p,t+1+(i−1)(k−1)
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for i = 1, 2. Decomposing the differential with respect to this isomorphism it is
block upper triangular, with the block diagonal being precisely gr([Q,−]).
′′ ⇐= ” Let δ + X1

p,k ∈ X1/X1
p,k such that [Q, δ] ∈ X2

p,2k−1. Then in particular
[Q, δ] ∈ X2

p,k ⊃ X2
p,2k−1. As

gr0H
1(gLA/gLA(p, k), [Q,−]) = 0,

we find that δ ∈ Xp,1, using (3.9) for t = 0. Applying this reasoning inductively,
we eventually find that δ ∈ Xp,k−1.
Finally, the assumption

grk−1H
1(gLA/gLA(p, k), [Q,−]) = 0,

implies that there exists X ∈ X0 such that [Q,X] − δ ∈ X1
p,k using (3.10),

concluding the proof.

Now we can make a direct connection with [DW06]: the cohomology groups
appearing in the theorem are exactly grtH

1(gLA/gLA(p, k), [Q,−]).

Proposition 3.4.13. Let (A = g ×M,Q) be a Lie algebroid over the vector
space M = V such that p = 0 ∈ M is a fixed point of order k. Let ΠQ denote
the corresponding fiberwise linear Poisson structure on A∗. Then

H2,t
lin(Π(k)

Q ) ∼= grtH
1(gLA/gLA(p, k), [Q,−])

for t = 0, . . . , k − 1. Here the left hand side denotes the cohomology as defined
in [DW06], where Π(k)

Q denotes the k-th order Taylor expansion of ΠQ around
0p. The right hand side denotes the graded cohomology of the filtered complex
as defined above (3.11).

Proof. As shown in [CM08], there is an C∞(M)-linear isomorphism of graded
Lie algebras

Φ : X•
lin(A∗)[1] → X(A[1]).

Let p ∈ M denote the origin. On the left hand side, we can define subspaces
corresponding to the order of vanishing at 0p ∈ A∗: For q, t ≥ 0, let

Xq
lin(A∗)p,t := It

0p
Xq(A∗) ∩ Xq

lin(A∗),

where I0p ⊆ C∞(A∗) is the ideal of functions on A∗ vanishing at 0p ∈ A∗. For
brevity, we omit the argument A∗ in the following. It is straightforward to
verify that

[(Xq1
lin)p,k1 , (X

q2
lin)p,k2 ] ⊆ (Xq1+q2−1

lin )p,k1+k2−1,
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and Φ((Xq
lin)p,t) = Xq−1

p,t (A[1]). In particular, the assumption that p is a fixed
point of order k in terms of ΠQ means that ΠQ ∈ X2(A∗)p,k. This implies that
the differential [ΠQ,−] induces a differential on the quotients

(X1
lin)/(X1

lin)p,1 (X2
lin)/(X2

lin)p,k (X3
lin)/(X3

lin)p,2k−1.
[ΠQ,−] [ΠQ,−]

Again the order of vanishing gives rise to a filtered complex, and Φ descends to
a filtered isomorphism

(X1
lin)/(X1

lin)p,1 (X2
lin)/(X2

lin)p,k (X3
lin)/(X3

lin)p,2k−1

X0(A[1])/X0(A[1])p,1 X1(A[1])/X1(A[1])p,k X2(A[1])/X2(A[1])p,2k−1

[ΠQ,−]

Φ

[ΠQ,−]

Φ Φ
[Q,−] [Q,−]

,

giving rise to an isomorphism of the corresponding graded quotients. It
remains to be shown that H2,s

lin(Π(k)) is isomorphic to the cohomology of the
corresponding graded quotient

0 (X2
lin)p,s/(X2

lin)p,s+1 (X3
lin)p,s+k−1/(X3

lin)p+s+k
gr([ΠQ,−])

for s = 0, . . . , k − 2, and

(X1
lin)/(X1

lin)p,1 (X2
lin)p,k−1/(X2

lin)p,k (X3
lin)p,2k−2/(X3

lin)p,2k−1
gr([ΠQ,−]) gr([ΠQ,−])

for s = k − 1. However, there is already an isomorphism on the level of
cochain complexes: by identifying V(s)

i,lin(T0p
A∗) with multivector fields on A∗

with degree s polynomial coefficients in M = V , we get a complete set of
representatives of Xi

lin(A∗)p,s/X
i
lin(A∗)p,s+1. Moreover, this also intertwines

the differentials: given any homogeneous linear multivector field A ∈ V(s)
i,lin, this

amounts to checking that

[ΠQ, A] − [Π(k)
Q , A] ∈ Xi

lin(A∗)p,k+s.

But this is immediate, as ΠQ − Π(k)
Q ∈ X2

lin(A∗)p,k+1.

3.4.2 Fixed points of Lie n-algebroids

In this section we apply the main theorem to Lie n-algebroids and obtain a
result analogous to Theorem 3.4.11. In classical terms, Lie n-algebroids can be
described as a graded vector bundle with an anchor, and a collection of higher
brackets on the space of its sections. We will first look at the case when the
anchor vanishes in a point p ∈ M , and interpret Theorem 3.3.20 in this setting.
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3.4.2.1 Lie n-algebroids

We start with the definition of a Lie n-algebroid. Just as for Lie algebroids
there are several ways to characterize Lie n-algebroids. We choose the graded
geometric point of view.

Definition 3.4.14. Let M be a smooth manifold. A Lie n-algebroid over M is
a pair (E,Q), where

i) E =
⊕n

i=1 Ei[i− 1] is a non-positively graded vector bundle,

ii) Q : Γ(S(E∗[−1])) → Γ(S(E∗[−1])) is a degree 1 R-linear derivation,

satisfying

a) Q2 = 1
2 [Q,Q] = 0.

We denote by
C∞(E[1], Q) := (Γ(S(E∗[−1])), Q)

the differential graded commutative algebra of smooth functions on E[1], and
by

(X(E[1]), [Q,−], [−,−]) := (DerR(C∞(E[1])), [Q,−], [−,−])
the differential graded Lie algebra of vector fields on E[1].

Remark 3.4.15.

i) C∞(E[1]) is bigraded as an algebra: the grading coming from the grading
on E, and the grading coming from the symmetric power of E∗[−1], which
we will refer to as the weight.

ii) The bigrading on C∞(E[1]) induces a bigrading on X(E[1]). The grading
coming from the grading on E will be called the degree of a vector field,
while the grading coming from the weight will be called the arity.

iii) We do not require Q to respect the bigrading, merely that Q has degree
1. So Q can be decomposed as Q =

∑n
i=0 Q

(i), where Q(i) raises the
symmetric power by i.

iv) Due to T. Voronov [Vor10], the data of a Lie n-algebroid can be described
equivalently in terms of an anchor ρ : Γ(E1) → X(M) and a collection of
multibrackets

ℓk : Sk(E[1]) → E[1]
for k ≥ 1 of degree 1 satisfying quadratic identities.
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v) When E is concentrated in degree 0, this reduces to the definition of a
Lie algebroid.

vi) X(E[1]) is a graded Lie algebra whose Maurer-Cartan elements are
precisely the Lie n-algebroid structures.

Although the functions and vector fields on E[1] are more complicated to
describe than in the Lie algebroid setting, the analogue of Lemma 3.3.15 still
holds:

Proposition 3.4.16. There is a short exact sequence of graded C∞(M)-
modules:

0 C∞(E[1]) ⊗ E[1] X(E[1]) C∞(E[1]) ⊗ X(M) 0ι σ ,

where tensor products are over C∞(M), ι and σ are the contraction and
restriction to C∞(M) respectively. Moreover, any choice of connections on
the Ei give rise to a splitting of the sequence.

Note however that there is a difference from the Lie algebroid case: the module
C∞(E[1]) is not finitely generated as C∞(M)-module. Consequently, there is
no (finite-dimensional) vector bundle F such that C∞(E[1]) = Γ(F ). Not all
hope is lost however: the sequence above restricts to every degree, and every
degree is finitely generated. So vector fields of a given degree are isomorphic
to the sections of some vector bundle. This allows us to make sense of vector
fields of given degree being Cp-close for some p.

Remark 3.4.17. Before we go on to apply Theorem 3.3.20, we make an
observation, pointed out in [LGLS20]: For any Lie n-algebroid (E,Q), (E1, Q

(1))
is an almost Lie algebroid, which makes sense as the component Q(1) preserves
the functions on E[1]:

Q(1)(Γ(S(E∗
1 [−1]))) ⊆ Γ(S(E∗

1 [−1])).

If we now define a fixed point of Q to be a fixed point of Q(1), Theorem 3.2.8 in
combination with remark 3.2.9 now yields a stability criterium for fixed points
of Lie n-algebroids.
A Lie n-algebroid however contains more data than just the underlying almost
Lie algebroid structure on its degree −1 part. Therefore, if we want to know if
a fixed point is stable for nearby Lie n-algebroid structures, we might be able
to do better, taking into account properties of other components of Q. For this
Theorem 3.3.20 will be useful.
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3.4.2.2 The ingredients

In this section we show that we are in the setting of assumptions 3.3.17.

i) We first define the graded Lie algebra where things will take place. There
is a slight difference with Lie algebroids here: while for Lie algebroids, the
notion of arity and degree of vector fields coincide, that is not the case
here. In particular, this implies that degree zero vector fields do not only
consist of covariant differential operators on the graded vector bundle E,
but also contain C∞(M)-linear maps X : Γ(E∗

2 [−2]) → Γ(S2(E∗
1 [−1]))

for example. The induced gauge action on a vector field by this element
is nothing but

X1(E[1]) ∋ Q 7→ Q+ [X,Q] ∈ X1(E[1]).

In particular, if Q is arity-homogeneous, Q gauge transformed by X will
not be. Moreover, as X is C∞(M)-linear, it induces the identity on M , so
it is not relevant for moving the fixed point around. We therefore define

gi
LnA :=

{
0X0(E[1]) i = 0,
Xi(E[1]) i > 0,

(3.12)

where 0X0(E[1]) denotes the set of vector fields with degree and arity 0.
We take the differential ∂ = 0.

ii) Although the general algebraic framework does not allow such a uniform
description as for Lie algebroids, given a fixed point p ∈ M of order
(1, l) for l ≥ 0 which we define below, we can still associate a graded
Lie subalgebra gLnA(p, (1, l)) of gLnA to it, such that its Maurer-Cartan
elements are those Lie n-algebroid structures which have p ∈ M a fixed
point of order (1, l). As the only relevant degrees to Theorem 3.3.20 are
0, 1 and 2, we only specify the Lie subalgebra in these degrees. The
definition can be extended by setting g≥3

LnA(p, (1, l)) = g≥3
LnA to obtain a

Lie subalgebra.
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Definition 3.4.18. Let E =
⊕n

i=1 Ei[i− 1] be a graded vector bundle
over M , p ∈ M and let l ≥ 0 be an integer. Define

g0
LnA(p, (1, l)) := {δ ∈ 0X0(E[1]) | δ(C∞(M)) ⊆ IpC

∞(M)}

g1
LnA(p, (1, l)) := {δ ∈ X1(E[1]) | δ(C∞(M)) ⊆ IpΓ(E∗

1 [−1]),

δ(0)(Γ(E∗
1 [−1])) ⊆ I l

pΓ(E∗
2 [−2])}

g2
LnA(p, (1, l)) := {δ ∈ X2(E[1]) | δ(2)(C∞(M)) ⊆ IpΓ(S2(E∗

1 [−1])),

δ(1)(C∞(M)) ⊆ I l+1
p Γ(E∗

2 [−2]),

δ(1)(Γ(E∗
1 [−1])) ⊆ I l

pΓ(E∗
2 [−2])Γ(E∗

1 [−1])},

where the superscripts in parentheses correspond to the arity.

Definition 3.4.19. Let (E,Q) be a Lie n-algebroid over M . Let l ≥ 0
be an integer. A point p ∈ M is called a fixed point of order (1,l) if
Q ∈ g1

LnA(p, (1, l)).

Remark 3.4.20.
i) In terms of the anchor ρ : E1 → TM and the multibrackets {ℓk}k≥1,

a point p ∈ M is a fixed point of order (1, l) if ρp = 0, and if
ℓ1(Γ(E2)) ⊆ I l

pΓ(E1).
ii) One may wonder why we include the order of vanishing of ℓ1 :

Γ(E2) → Γ(E1) in the definition. In Section 3.4.5, we deal with
singular foliations, where it will be essential that we can ensure
stability of a fixed point of type (1, l), rather than just a point where
the anchor vanishes.

The following lemma shows that these subspaces actually yield a graded
Lie subalgebra of g.

Lemma 3.4.21. The subspaces defined above satisfy

[g0
LnA(p, (1, l)), gi

LnA(p, (1, l))] ⊆ gi
LnA(p, (1, l)),

[g1
LnA(p, (1, l)), g1

LnA(p, (1, l))] ⊆ g2
LnA(p, (1, l))

for i = 0, 1, 2.

Similar to the Lie algebroid case, one can show that g0
LnA/g

0
LnA(p, (1, l)) ∼=

TpM , and gi
LnA/g

i
LnA(p, (1, l)) for i = 1, 2 consists of jets at p of sections

of some vector bundles. We will give a description of the complex below
in remark 3.4.22.
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iii) By the description above, the splittings can be chosen to be polynomial
sections when restricting to a small neighborhood of p ∈ M .

iv) Fix a Lie n-algebroid structure Q ∈ gLnA(p, (1, l)), i.e. a Lie n-algebroid
structure on E such that p ∈ M is a fixed point of order (1, l) of Q.

Remark 3.4.22. We can give an explicit description of the complex
(gLnA/gLnA(p, (1, l)), [Q,−]) in degrees 0, 1 and 2 in terms of the
multibrackets. After picking coordinates around the fixed point p, we
may assume that M = V is a vector space and p is the origin. Let
E = V ×

⊕n
i=1 ei[i − 1] a trivial bundle. Then the cochain spaces are

isomorphic to

g0
LnA/g

0
LnA(p, (1, l)) ∼=V

g1
LnA/g

1
LnA(p, (1, l)) ∼=e∗

1 ⊗ V ⊕ J l−1
p (E∗

2 ⊗ E1)

g2
LnA/g

2
LnA(p, (1, l)) ∼=S2(e∗

1[−1]) ⊗ V

⊕ J l
p(E∗

2 ⊗ TV ) ⊕ J l−1
p (E∗

1 ⊗ E∗
2 ⊗ E1).

For v ∈ V , the map

[Q,−] : g0
LnA/g

0
LnA(p, (1, l)) → g1

LnA/g
1
LnA(p, (1, l))

is defined by

[Q,−](v) = (dτ
CE(v),−v(ℓ1) + I l

pΓ(E∗
2 ⊗ E1)), (3.13)

where we use that the bundles are trivialized. Here we recall that dτ
CE

is the Chevalley-Eilenberg differential associated to the linear holonomy
representation τ : e1 → End(TpM) as in equation (3.1) and definition
3.2.5.
For α : e1 → V and δ : Γ(E2) → Γ(E1), the map

[Q,−] : g1
LnA/g

1
LnA(p, (1, l)) → g2

LnA/g
2
LnA(p, (1, l))

is defined by

[Q,−](α, δ + I l
pΓ(E∗

2 ⊗ E1)) = (dτ
CE(α), ρ ◦ δ+α ◦ ℓ1 + I l+1

p Γ(E∗
2 ⊗ TV ),

[Q,−](2,1)(α, δ + I l
p)),

(3.14)

where the last term for e ∈ e1, f ∈ e2 is defined by

[Q,−](2,1)(α, δ+I l
p)(e, f) = α(e)(ℓ1(f))+ℓ2(e, δ(f))−δ(ℓ2(e, f))+I l

pΓ(E1).
(3.15)
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The cocycles are therefore pairs (α, δ + I l
pΓ(E∗

2 ⊗ E1)), where α is a
Chevalley-Eilenberg cocycle for e1 with values in the representation V ,
and extending it to any section α̂, it satisfies

ρ ◦ δ + α̂ ◦ ℓ1 ∈ I l+1
0 Γ(E∗

2 ⊗ TV )

and for any e ∈ e1, f ∈ e2,

α(e)(ℓ1(f)) + ℓ2(e, δ(f)) − δ(ℓ2(e, f)) ∈ I l
pΓ(E1).

We check that the assumptions 3.3.17a)-e) are satisfied.

a) By considerations similar to the ones for Lie algebroids, we choose the
following topologies.

- On g0
LnA, we pick the C∞-topology,

- On g1
LnA, we pick the Cmax{1,l}-topology,

- On g2
LnA, we pick the Cl-topology.

b) As ∂ = 0, it is continuous.

c) Note that the continuity of the bracket is only needed in certain arity
components, as the others disappear after taking the quotient. More
precisely, the continuity of [−,−] : g1

LnA × g1
LnA → g2

LnA is only needed
when restricting the domain to

(πE∗
2

⊕ πS2(E∗
1 [−1])g1

LnAπE∗
1

⊕ πE∗
1
g1

LnAπC∞(M),

and the codomain to

(πE∗
−2

⊕ πS2(E∗
1 [−1]))g2

LnAπC∞(M) ⊕ πE∗
1 ⊗E∗

2
g2

LnAπE∗
−1
,

where the π denote projections onto the respective component in C∞(E[1]).
In these degrees, continuity is guaranteed by the choices above.

d) The gauge action of g0
LnA on g1

LnA is similar to item d) in Section 3.4.1.1.
The degree 0 part is given by g0

LnA = CDO
(⊕n

i=1 E
∗
i

)
, and these act by

degree 0 automorphisms of the graded vector bundle E, covering the flow
of the symbol of the differential operator. Hence the analogue of Lemma
3.3.12 still holds, and a neighborhood of the origin of g0

LnA/g
0
LnA(p, (1, l))

corresponds to a neighborhood of p ∈ M .

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.
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3.4.2.3 Applying the main theorem

Let gLnA and gLnA(p, (1, l)) as above in equation (3.12) and Definition 3.4.18
respectively. Plugging this into the main theorem yields:

Theorem 3.4.23. Let (E,Q) be a Lie n-algebroid over M . Let p ∈ M be a
fixed point of order (1, l) for l ≥ 0, that is, Q ∈ g1

LnA(p, (1, l)). Assume that

H1(gLnA/gLnA(p, (1, l)), [Q,−]) = 0.

Then for every open neighborhood U of p ∈ M , there exists a Cmax{1,l}-
neighborhood U of Q such that for any Lie n-algebroid structure Q′ ∈ U there
is a family I in U of fixed points of order (1, l) of Q′ parametrized by an open
neighborhood of

0 ∈ H0(gLnA/gLnA(p, (1, l)), [Q,−]).

Remark 3.4.24. This result gives a more refined criterium for stability of the
fixed point p: instead of looking at E1 with its almost Lie algebroid structure as
in remark 3.4.17, we additionally take into account the map ℓ1 : Γ(E2) → Γ(E1).
The relation between remark 3.4.17 and Theorem 3.4.23 is as follows: the
projection of a vector field X ∈ Xi(E[1]) to the arity i component restricted to
C∞(E1[1]) defines a map

res : gLnA → X(E1[1]),

with res(gj
LnA(p, (1, l)) ⊆ Xj

p,1(E1[1]) for j = 0, 1, 2. It therefore induces a map

res : gj
LnA/g

j
LnA(p, (1, l)) → Xj(E1[1])/Xj

p,1(E1[1]).

Now given a Lie n-algebroid structure Q ∈ g1
LnA(p, (1, l)) with corresponding

almost Lie algebroid structure Q(1) ∈ X1
p,1(E1[1]), the map res is compatible

with the differentials [Q,−] and [Q(1),−] of gLnA/gLnA(p, (1, l)) and X(E1[1])
respectively in degrees 0 and 1. Consequently, res descends to cohomology:

H1(res) : H1(gLnA/gLnA(p, (1, l)), [Q,−]) → H1(X(E1[1])/Xp,1(E1[1]), [Q(1),−]).

For l = 0, H1(res) is injective, reflecting the fact that any Lie n-algebroid (E,Q)
has an underlying almost Lie algebroid structure (E1, Q

(1)).
For l > 0, the map is no longer injective, but vanishing of

H1(gLnA/gLnA(p, (1, l)), [Q,−])

also guarantees the existence of fixed points of order (1, l), which the vanishing
of

H1(X(E1[1])/Xp,1(E1[1]), [Q(1),−])
does not.
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3.4.3 Higher order fixed points of Lie n-algebroids

As for Lie algebroids, there are several examples of Lie n-algebroids, for which
Theorem 3.4.23 fails in a trivial way because the anchor of the Lie n-algebroid
vanishes up to higher order, causing components of Q to vanish to first order.
For this reason, we extend Theorem 3.4.23 to so called fixed points of order
(k, l), where k and l are integers.

3.4.3.1 The ingredients

We show that we are in the setting of assumptions 3.3.17.

i) As we still work with Lie n-algebroid structures on a graded vector bundle
E =

⊕n
i=1 Ei[i − 1], take the graded Lie algebra gLnA as in equation

(3.12).

ii) We define the graded Lie subalgebra, corresponding to p ∈ M being a
fixed point of order (k, l).
Let p ∈ M , k ≥ 0, 0 ≤ l ≤ 2k − 2 integers.

Definition 3.4.25. Define

g0
LnA(p, (k, l)) := {δ ∈ 0X0(E[1]) | δ(C∞(M)) ⊆ Ip}

g1
LnA(p, (k, l)) := {δ ∈ X1(E[1]) | δ(C∞(M)) ⊆ Ik

p Γ(E∗
1 [−1]),

δ(1)(Γ(E∗
1 [−1])) ⊆ Ik−1

p Γ(S2(E∗
1 [−1])),

δ(0)(Γ(E∗
1 [−1])) ⊆ I l

pΓ(E∗
2 [−2]),

δ(2)(Γ(E∗
2 [−2])) ⊆ I2k−2−l

p Γ(S3(E∗
1 [−1]))}

g2
LnA(p, (k, l)) := {δ ∈ X2(E[1]) | δ(2)(C∞(M)) ⊆ I2k−1

p Γ(S2(E∗
1 [−1])),

δ(1)(C∞(M)) ⊆ Ik+l
p Γ(E∗

2 [−2]),

δ(2)(Γ(E∗
1 [−1])) ⊆ I2k−2

p Γ(S3(E∗
1 [−1]))}.

Then:

Definition 3.4.26. Let (E,Q) be a Lie n-algebroid over M . We say that
p ∈ M is a fixed point of order (k, l) if Q ∈ g1

LnA(p, (k, l)).
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Remark 3.4.27. Relating to remark 3.4.15iv), these conditions in classical
terms are equivalent to the following. For x, y, z ∈ Γ(E1), e ∈ Γ(E2), we
require the following:

ρ(x) ∈ Ik
pX(M),

ℓ2(x, y) ∈ Ik−1
p Γ(E1),

ℓ1(e) ∈ I l
pΓ(E1),

ℓ3(x, y, z) ∈ I2k−l−2
p Γ(E2).

The first condition is what we are interested in, while the second condition
is necessary to make things work for the same reason as for Lie algebroids.
The seemingly odd last condition can be motivated by the equation

Q2(α) = 0, (3.16)

for α ∈ Γ(E∗
1 ) : when looking at the weight 2 part of equation (3.16), it is

equivalent to

ℓ2(x, ℓ2(y, z)) + cycl.(x, y, z) = ℓ1(ℓ3(x, y, z)).

As the left hand side of the equation lies in I2k−2
p Γ(E1), one way to ensure

the same holds for the right hand side is to require that ℓ3(x, y, z) ∈
I2k−l−2

p Γ(E2).

Lemma 3.4.28. The subspaces defined above satisfy

[g0
LnA(p, (k, l)), gi

LnA(p, (k, l))] ⊆ gi
LnA(p, (k, l)),

[g1
LnA(p, (k, l)), g1

LnA(p, (k, l))] ⊆ g2
LnA(p, (k, l))

for i = 0, 1, 2.

This tells us that gLnA(p, (k, l)) is indeed a graded Lie subalgebra (if as
before, we set g≥3

LnA(p, (k, l)) = g≥3
LnA), whose Maurer-Cartan elements are

precisely those Lie algebroid structures for which p ∈ M is a fixed point
of order (k, l).

Remark 3.4.29. After picking a suitably small coordinate neighborhood
of p ∈ M such that E is a trivial bundle, we can identify the cochain
spaces of the complex gLnA/gLnA(p, k) in the relevant degrees with the



HIGHER ORDER FIXED POINTS OF LIE (N -)ALGEBROIDS 121

following:

g0
LnA/g

0
LnA(p, (k, l)) ∼= TpM

g1
LnA/g

1
LnA(p, (k, l)) ∼= Jk−1

p (E∗
1 [−1] ⊗ TM) ⊕ Jk−2

p (S2(E∗
1 [−1]) ⊗ E1[1])

⊕ J l−1
p (E∗

2 [−2] ⊗ E1[1]) ⊕ J2k−l−3
p (S3(E∗

1 [−1]) ⊗ E2[2])

g2
LnA/g

2
LnA(p, (k, l)) ∼= J2k−2(S2(E∗

1 [−1]) ⊗ TM)

⊕ J2k−3
p (S3(E∗

1 [−1]) ⊗ E1[1]) ⊕ Jk+l−1
p (E∗

2 [−2] ⊗ TM).

iii) It follows that by restricting to a sufficiently small coordinate neighborhood
of p ∈ M over which E trivializes as a graded vector bundle, we can choose
splittings

σi : gi
LnA/g

i
LnA(p, (k, l)) → gi

LnA

for i = 0, 1.

iv) Now fix a Lie n−algebroid structure Q ∈ g1
LnA(p, (k, l)).

We check that the data satisfies assumptions 3.3.17a)-d).

a) We pick the following topologies.

- On g0
LnA, we pick the C∞-topology,

- On g1
LnA, we pick the Cmax{2k−1,k+l−1}-topology,

- On g2
LnA, we pick the Cmax{2k−2,k+l−1}-topology.

b) As ∂ = 0, it is continuous.

c) As for fixed points of order (1, l) it is only certain components of g1
LnA

and g2
LnA we need continuity of the bracket in. More precisely, for the

domain, we may restrict to

(πE∗
2

⊕ πS2(E∗
1 [−1])g1

LnAπE∗
1

⊕ πE∗
1
g1

LnAπC∞(M) ⊕ πS3(E∗
1 [−1])g

1
LnAπE∗

2 [−2],

while for the codomain, we need

(πS2(E∗
1 [−1]) ⊕ πE∗

2 )g
2
LnAπC∞(M) ⊕ πS3(E∗

1 [−1])g
2
LnAπE∗

1
.

The choices in a) guarantee the continuity.

d) The gauge action is the same as for fixed points of order (1, l). In particular,
a neighborhood of 0 in gLnA/gLnA(p, (k, l)) corresponds to a neighborhood
of p ∈ M .

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.



122 STABILITY OF FIXED POINTS IN POISSON GEOMETRY AND HIGHER LIE THEORY

3.4.3.2 Applying the main theorem

Let gLnA and gLnA(p, (k, l)) be as in equation (3.12) and Definition 3.4.25
respectively. Applying Theorem 3.3.20, we obtain:

Theorem 3.4.30. Let (E,Q) be a Lie n-algebroid over M . Let p ∈ M be a
fixed point of order (k, l) for k ≥ 0, 0 ≤ l ≤ 2k − 2, that is, Q ∈ g1

LnA(p, (k, l)).
Assume that

H1(gLnA/gLnA(p, (k, l)), [Q,−]) = 0.

Then for every open neighborhood U of p ∈ M , there exists a Cmax{2k−1,k+l−1}-
neighborhood U of Q ∈ gLnA such that for any Lie n-algebroid structure Q′ ∈ U
there is a family I ⊆ U of fixed points of order (k, l) of Q′ parametrized by an
open neighborhood of

0 ∈ H0(gLnA/gLnA(p, (k, l)), [Q,−])

.

3.4.4 Examples

In this section we compute the various cohomologies we encountered in some
explicit examples.

Example 3.4.31. Let M = R2. Consider the Lie algebroid

gl2 ×M,

associated to the standard action on M . The origin p is a fixed point of order 1
of the Lie algebroid with singular foliation, and we will show that it is stable for
nearby Lie algebroid structures using Theorem 3.2.8. The relevant cohomology
in this case is given by

H1
CE(gl2, TpM).

This cohomology vanishes as for any α : gl2 → TpM , the cocycle condition reads

α([x, y]) = xα(y) − yα(x)

for every x, y ∈ gl2. Plugging in x = id, we see that α = dτ
CE(α(id)).

Therefore, using Theorem 3.2.8, the origin is a stable fixed point for nearby Lie
algebroid structures.
But we can say more. There is a natural Lie 2-algebroid (E,Q) associated to
this action [LGLS20, Example 3.33, Example 3.98], such that the origin is a
fixed point of order (1,1). We will apply Theorem 3.4.23 to show that the fixed
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point is also stable for Lie 2-algebroid structures close to this one. The only
information we need is that E1 is the trivial bundle with fiber gl2, such that
the binary bracket agrees with the Lie bracket of the action Lie algebroid, E2 is
a trivial bundle with fiber R2 and that the complex

0 Γ(E2) Γ(E1) ρ(Γ(E1)) 0ℓ1 ρ

is exact.
Indeed, following remark 3.4.22, we can compute the cohomology relevant
to Theorem 3.4.23. If we take a cocycle (α, δ + IpΓ(E∗

2 ⊗ E1)) ∈
X1(E[1])/X1

p,(1,1)(E[1]), then the vanishing of H1
CE(gl2, TpM) implies that

α = dτ
CE(v) for some v ∈ TpM , or more explicitly, we have α = −v(ρ)(p) ∈

(E1)∗
p ⊗ TpM .

The second cocycle condition of in equation (3.14) now reads that

−v(ρ)(ℓ1(e)) + ρ(δ(e)) ∈ I2
pX(M)

for every section e ∈ Γ(E2). If we now take e to be a constant section, then we
know in particular that

−v(ρ)(ℓ1(e)) − ρ(v(ℓ1(e)) = −v(ρ(ℓ1(e))) = 0.

So we find
ρ(δ(e) + v(ℓ1)(e)) ∈ I2

pX(M).

As this means that the first order Taylor expansion of this expression vanishes,
we look at the linear part of this:

0 = (ρ(δ(e) + v(ℓ1)(e)))(1) = ρ(1)(δ(e)(p) + v(ℓ1)(e)(p)).

However, note that ρ has linear coefficient functions. This means that ρ(1) =
ρ, and it follows that the constant section δ(e)(p) + v(ℓ1(e))(p) ∈ ker(ρ :
Γ(E1) → X(M)). However, as ker(ρ) = im(ℓ1) at the level of sections, and
all sections in the image of ℓ1 vanish at the origin, it follows that δ(p) +
v(ℓ1)(p) = 0, which means that δ = −v(ℓ1) + IpΓ(E∗

2 ⊗ E1), showing that
H1(gLnA/gLnA(p, (1, 1)), [Q,−]) vanishes (without needing the third cocycle
condition!), and that p is stable as a fixed point of order (1, 1) of the Lie
2-algebroid by Theorem 3.4.23.

A similar example is given by the special linear subalgebra.

Example 3.4.32. Let M = R2. Consider the Lie algebroid

sl2 ×M
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associated to the standard action on M . The origin p is a fixed point of order
1 of the Lie algebroid and we will show that it is stable using Theorem 3.2.8.
The relevant cohomology in this case is given by

H1
CE(sl2, TpM),

which vanishes by Whitehead’s first lemma, as sl2 is simple. Therefore, the
origin is a stable fixed point for nearby Lie algebroid structures by Theorem
3.2.8.
Again, there is a natural Lie 2-algebroid (E,Q) associated to this action
[LGLS20, Example 3.30, Example 3.96], such that the origin p is a fixed point of
order (1, 2), and it can be shown that H1(gLnA/gLnA(p, (1, 2)), [Q,−]) vanishes
in the same way as in example 3.4.31. Consequently, p is stable as a fixed point
of order (1, 2) of this Lie 2-algebroid by Theorem 3.4.23.

Example 3.4.33. Let M = R3, and consider the function ϕ ∈ C∞(M) given
by

ϕ(x, y, z) = 1
6(x3 + y3 + z3).

There is a Lie 2-algebroid, for which the image of the anchor map is given
by all vector fields preserving ϕ, as in [LGLS20, Example 3.101]. The origin
p is a fixed point of order (2, 2), but p is not stable! The Lie 2-algebroid is
given by the trivial rank 3 bundle in degree −1 with frame {e1, e2, e3}, and
the trivial line bundle in degree −2 with frame {f1} (with corresponding dual
frames {e1, e2, e3} and {f1} respectively). If Q denotes the homological vector
field of this Lie 2-algebroid, then it can be shown that

Qϵ = Q+ (e1 − e2) ⊗ ϵ∂x − f1 ⊗ ϵe3

is still a Lie n-algebroid structure, but has no zero-dimensional leaves for ϵ < 0,
where f1 ⊗ ϵe3 is viewed as an arity 0 degree 1 vector field. By Theorem 3.4.30,
we see that the relevant cohomology H1(gLnA/gLnA(p, (2, 2)), [Q,−]) is nonzero.
Indeed, one can check that 1

ϵ (Qϵ −Q) is a nontrivial cocycle.

3.4.5 Fixed points of singular foliations

In this section we apply the results of the previous section to singular
foliations. We work towards a cohomological stability criterium for certain
singular foliations (Proposition 3.4.42). We then apply this to obtain a
formal rigidity criterium for foliations induced by a linear representation of
a semisimple Lie algebra (Corollary 3.4.46). We start with a general lemma,
which extends examples 3.4.31 and 3.4.32, giving a sufficient condition for when
the cohomological assumption of Theorem 3.4.23 is satisfied.
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Lemma 3.4.34. Let V be a finite-dimensional vector space, and let (E =
V ×

⊕n
i=1 gi[i− 1], Q) be a Lie n-algebroid over V , such that the origin p is a

fixed point of order (1, l). Assume that

- The coefficient functions of the anchor ρQ : Γ(E1) → X(V ) are linear,

- H1
CE(g1, V ) = 0,

- ker(ρQ) = im(ℓQ
1 ).

Then
H1(gLnA/gLnA(p, (1, l)), [Q,−]) = 0.

Proof. We use the description of H1(gLnA/gLnA(p, (1, l)), [Q,−]) as in remark
3.4.22.
The main ingredients of the proof are already present in example 3.4.31. Given
a cocycle (α, δ + I l

pΓ(E∗
2 ⊗ E1)) ∈ g1

LnA/g
1
LnA(p, (1, l)), we eventually find that

ρ(δ(e) + v(ℓ1(e))) ∈ I l+1
p X(V )

for every constant section e ∈ Γ(E2). Taking the s-homogeneous part of this
expression for s = 1, . . . , l − 1, we see that it is equal to

0 = ρ(1)(δ(s−1)(e)),

and for the l-homogeneous part, we find

0 = ρ(1)(δ(l−1)(e) + v(ℓ(l)
1 )(e)).

As ρ(1) = ρ, and ker(ρ) = im(ℓ1) ⊆ I l
pΓ(E1), it follows that the s-homogeneous

part of δ for s = 0, . . . , l − 2 vanishes, while the l − 1-homogenous part is given
by −v(ℓ(l)

1 ). As v(ℓ1) ∈ I l−1
p Γ(E∗

2 ⊗E1), we see that δ = −v(ℓ1)+I l
pΓ(E∗

2 ⊗E1),
which concludes the proof.

Remark 3.4.35. Note that the linearity of ρ only comes into play when we
want to use properties of the kernel of ρ. In fact a weaker condition which
can replace linearity of ρ and ker(ρ) = im(ℓ1) is that the linear part ρ(1) of ρ,
which can be viewed as a map between sections of E1 and vector fields on V
has kernel contained in I l

pΓ(E1).

Recall the following definition.

Definition 3.4.36. Let M be a smooth manifold. A singular foliation on M is
a subsheaf F ⊆ XM which is locally finitely generated, and involutive. Denote
a foliated manifold by (M,F).
We say that p ∈ M is a fixed point of F if F ⊆ IpXM .
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Just as for Lie algebroids, associated to a fixed point p ∈ M of a singular
foliation F , there is a Lie algebra gp and a representation of gp on TpM :

Lemma 3.4.37 ([AS09],[AZ12]). Let (M,F) be a foliated manifold and p ∈ M
a fixed point of F .

i) Let Fp denote the stalk of F at p. Then the induced Lie bracket on Fp

descends to the finite-dimensional vector space

gp := Fp/IpFp.

ii) The map
τ : gp → End(TpM)

given by
τ(x)(v) = [x̃, ṽ](p)

is a well-defined representation of gp called the linear holonomy
representation, where x ∈ gp, v ∈ TpM , and x̃, ṽ are extensions to elements
of F and X(M) respectively.

Remark 3.4.38. Note that a Lie n-algebroid (E,Q) induces a singular foliation
on the base manifold M , which is the image of the anchor map at the level of
sections.

The following definition was proposed by Camille Laurent-Gengoux and Sylvain
Lavau [LGL].

Definition 3.4.39. Let (M,F) be a foliated manifold. A isomodule deformation
of F is a singular foliation FU on M × U , where 0 ∈ U ⊆ Rn is an open subset,
such that

a) For every p ∈ U , Fp is tangent to M × {p}, where Fp is the restriction of
FU to M × {p},

b) F0 = F ,

together with an isomorphism of C∞
M×U -modules ϕ : C∞

M×U ⊗C∞
M

F → FU .

This allows us to define a notion of stability of fixed points of a singular foliation.

Definition 3.4.40. Let (M,F) be a foliated manifold, and let p ∈ M be a zero-
dimensional leaf of F . We say that p is stable if for every isomodule deformation
(M × U,FU ), for every neighborhood p ∈ V ⊆ M , there is a neighborhood
0 ∈ W ⊆ U , such that Fq has a zero-dimensional leaf in V for q ∈ W .
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The following lemma was proven by Camille Laurent-Gengoux and Sylvain
Lavau [LGL]. We formulate a weaker version and include the proof in the
appendix for completeness.

Lemma 3.4.41. Let (V,F) be a vector space equipped with a linear foliation,
and (V × U,FU ) an isomodule (not necessarily linear) deformation. Then there
exists a geometric resolution (see [LGLS20]) of F

0 Γ(En) . . . Γ(E1) F 0, (3.17)

such that the differential has polynomial coefficient functions. Moreover, there
exists a Lie n-algebroid structure Q on ⊕n

i=1p
∗Ei, where p : V × U → V is the

projection, with the following properties:

- The unary bracket extends the complex (3.17),

- Q induces the foliation FU ,

- The sequence of C∞
M×U -modules

0 Γ(p∗En) . . . Γ(p∗E1) FU 0,

is exact,

- The restriction of Q to V ×{0} is a Lie n-algebroid structure on E inducing
F .

Using the results of this section, we obtain a stability result for linear foliations.

Proposition 3.4.42. Let (V,F) be a vector space, equipped with a linear
foliation. Assume that

H1
CE(g, V ) = 0,

where g is the isotropy Lie algebra of F at 0 acting by the linear holonomy
representation. Then the origin is a stable fixed point for all isomodule
deformations.

Proof. Let (V × U,FU ) be a isomodule deformation of F , and pick a Lie n-
algebroid (p∗E,Q) inducing FU as in Lemma 3.4.41. By [LGLS20, Theorem
2.3.5], we may assume that the differential on the complex vanishes in 0 up to
finite order l. In this case, the fiber (E1)0 over 0 ∈ V has the same dimension
as the isotropy Lie algebra by [LGLS20, Proposition 4.14].
Denote by ρ : Γ(E1) → X(V ) the map inducing the foliation.

Claim. We may assume that ρ has linear coefficient functions.
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Proof of claim. To see this, pick linear generators {Xi}r
i=1 for F which are

linearly independent over R, and consider their images {ei}r
i=1 in g. It is clear

that the ei generate g. However, they are also linearly independent: if ai ∈ R
are such that

r∑
i=1

aiei = 0 ∈ g,

then
r∑

i=1
aiXi ∈ I0F ⊆ I2

0X(M).

As the Xi are linear and were assumed to be linearly independent over R, it
follows that the ai must be zero.
Pick preimages si for Xi under ρ. The diagram

Γ(E1) F

Γ(E1)/I0Γ(E1) F/I0F

ρ

ρ

commutes, and the bottom row is a map from (E1)0 to g, sending si(0) to ei.
This shows that si form a local frame around 0, and ρ(si) = Xi is a linear
vector field, which proves the claim.

By the choice of Lie n-algebroid (p∗E,Q) of FU , the restriction (E,Q0) to
V × {0} has a fixed point of order (1, l), and satisfies the assumptions of
Lemma 3.4.34. So given a neighborhood W ⊆ V of the origin, there exists a
neighborhood U of Q0 in the space of Lie n-algebroid structures on E such that
all Q′ ∈ U have a fixed point q ∈ W .
Finally, as the map

U → {Lie n-algebroid structures on E}

given by
p 7→ Qp

is continuous, the result follows.

In particular, we have:

Corollary 3.4.43. Let (V,F) be a vector space equipped with a foliation that
has linear generators, such that all vector fields in F vanish at the origin. If the
isotropy Lie algebra g of F in 0 ∈ V is semisimple, then the origin is a stable
fixed point for all isomodule deformations.
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Proof. For semisimple Lie algebras g, H1
CE(g,−) is identically zero for finite-

dimensional representations by Whitehead’s first lemma.

Remark 3.4.44.

- Under the assumption that the foliation F we start with is linear, we
obtained a simplified criterium for stability of the origin, depending only
on the foliation, and not on the chosen Lie n-algebroid inducing it.

- If F is arbitrary, with a fixed point, and FU is a deformation which
admits a geometric resolution as in [LGLS20, Definition 2.1], hence a
Lie n-algebroid inducing FU , then restricting to F0 one gets a Lie n-
algebroid inducing F . Now Theorem 3.4.23 can be applied to the latter
Lie n-algebroid if H1(gLnA/gLnA(p, (1, l)), [Q,−]) = 0.

If (M,F) is a foliated manifold, and p ∈ M a fixed point stable under module-
stable deformations, let (M × U,FU ) be such a module-stable deformation. In
particular, for W ⊆ U as in Proposition 3.4.42, q ∈ W implies that Fq has a
fixed point p′ in M . This gives rise to two questions.

- Can we describe the isotropy Lie algebra of Fq in p′?

- If so, what can we say about the linear holonomy representation?

The following proposition provides an answer for both of these questions when
g is semisimple.

Proposition 3.4.45. Let (V,F) be a vector space equipped with a foliation that
has linear generators, such that the isotropy Lie algebra is semisimple, so that
the origin 0 = p ∈ V is a stable fixed point.
Let (V × U,FU ) be a isomodule deformation, such that for any q ∈ U , the
foliation Fq has a fixed point p′(q) ∈ V .
Then for a possibly smaller neighborhood W ⊆ U , the isotropy Lie algebra at
p′(q) is isomorphic to g. Moreover, the linear holonomy representations are
isomorphic.

Proof. As FU is a isomodule deformation, let (p∗E,Q) be a Lie n-algebroid
inducing FU as in Lemma 3.4.41, for which the unary bracket vanishes at
(p, 0) ∈ V × U up to order l ∈ Z>0.
As l > 0, by [LGLS20, Proposition 4.14], ((E1)p′ , (ℓ2)(p′,q)) is exactly the
isotropy Lie algebra of Fq in p′, where ℓ2 is the binary bracket of (p∗E,Q). As
we may assume E1 is a trivial bundle we denote (E1)p by h, and we consider
the map

V × U → ∧2h∗ ⊗ h



130 STABILITY OF FIXED POINTS IN POISSON GEOMETRY AND HIGHER LIE THEORY

given by
(v, q) 7→ (ℓ2)(v,q),

where the right hand side should be seen as the map which extends x1, x2 ∈ h to
a constant section, applies the binary bracket of the Lie n-algebroid, and then
evaluates it on (v, q) ∈ V × U . As semisimple Lie algebras are rigid by [NR67b,
Theorem 7.1] and Whitehead’s second lemma, there is a neighborhood O of
(ℓ2)(p,0), such that every Lie algebra structure in O is isomorphic to (ℓ2)(p,0).
Hence there is a neighborhood D of (p, 0) such that for every pair (p′, q) ∈ D
such that p′ is a fixed point of Fq, its isotropy Lie algebra is isomorphic to g.
For the assertion about the linear holonomy representation the proof is analogous:
we note that the linear holonomy representation is the linearization of the
anchor, and that representations of semisimple Lie algebras are rigid by [NR67a,
Theorem A] and Whitehead’s first lemma.

Proposition 3.4.45 says something about the first order approximation. If FU is
a deformation such that for every q ∈ U , Fq is linearizable, this yields a rigidity
result for such a deformation.
There is a sufficient condition for a foliation with semisimple isotropy to be
formally linearizable around a fixed point.

Corollary 3.4.46. Let (V,F) be a vector space equipped with a foliation with
linear generators, such that the isotropy Lie algebra g is semisimple. Let
(V ×U,FU ) be a module-stable deformation such that Fq has analytic generators
for every q ∈ U . For some neighborhood W ⊆ U of the origin, for every q ∈ W ,
there is a formal diffeomorphism of ϕq : V → V such that ϕ∗

qFq = F .

Proof. It suffices to show that a foliation with analytic generators with
semisimple isotropy in a fixed point is formally linearizable. This follows
from [LGR21, Corollary 2.24]: to apply this result, we need to show that the
linear holonomy representation g → End(V ) is faithful. The kernel is an ideal,
hence it is itself a semisimple Lie algebra. However, [LGR21, Theorem 1.10]
implies that the kernel is nilpotent. As any nilpotent and semisimple Lie algebra
is trivial, this shows that the linear holonomy representation is faithful.

3.5 Stability under additional structure

In the previous sections we have considered Lie n-algebroids, and applied
Theorem 3.3.20 to give a sufficient condition for when a fixed point of some
type of a Lie n-algebroid is stable.
Now suppose we are given a Lie algebroid with some additional structure. A
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natural question we can ask is if we can refine the criterium when we only
look at Lie algebroid structures which also have this additional structure. For
instance, given a Lie algebroid structure on T ∗M , we can require the Lie
algebroid differential on X•(M) to be a derivation of the Schouten-Nijenhuis
bracket. Is there a theorem similar to Theorem 3.4.11 when we only allow Lie
algebroid structures on T ∗M which are in addition derivations of the Schouten
bracket? Of course, it is known that such Lie algebroid structures are precisely
the Poisson structures on M , so [CF10] and [DW06] contain results on it.
In the first subsection, we will address the question above by fixing a Lie
algebroid (A, dA), and apply Theorem 3.3.20 to give a stability criterium for
fixed points of a Lie algebroid structure dA∗ on A∗ such that ((A, dA), (A∗, dA∗))
is a Lie bialgebroid. We then apply this result to obtain the following:

- First, by taking A = TM with its standard Lie algebroid structure
dA = ddR, recover the result from [DW06] for Poisson manifolds (Corollary
3.5.10).

- When Z ⊆ M is a hypersurface, we let A = ♭TM be the b-tangent bundle.
In this case we obtain a result for zeros of self-commuting b-bivector fields
(Theorems 3.5.12 and 3.5.16).

- When N : TM → TM is a Nijenhuis tensor, we obtain a result for Lie
algebroid structures near a Poisson structure compatible with N (Theorem
3.5.20), which we then refine to a result dealing only with Poisson-Nijenhuis
structures (Theorem 3.5.21). As application of this, we obtain a stability
result for fixed points of holomorphic Poisson structures.

In the second subsection, we look at Courant algebroids and formulate a stability
theorem for fixed points of Courant algebroid structures on a given vector bundle
E with fixed non-degenerate metric ⟨−,−⟩ (Theorem 3.5.36).

Finally, in the last subsection we consider Dirac structures inside a split Courant
algebroid A⊕A∗. Under the assumption that both A and A∗ are Dirac structures,
we apply the main theorem to obtain a sufficient condition for fixed points of
the Dirac structure A. There is a difference from all the results obtained so far:
the theorem does not only guarantee a fixed point near the given one, but in
fact guarantees that the fixed point will lie on the same A∗-leaf as the original
one (Theorem 3.5.50).

3.5.1 Higher order fixed points of Lie bialgebroids

Throughout this section, let (A, dA) be a fixed Lie algebroid over the manifold
M , with anchor ρA and bracket [−,−]A. We apply Theorem 3.3.20, and find a
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sufficient condition for when a fixed point of (A∗, dA∗) is stable for nearby Lie
algebroid structures on A∗ which are compatible with dA, in a sense we make
precise below.

3.5.1.1 Lie bialgebroids

We embed the Lie algebra of vector fields on A∗[1] into a bigger graded Lie
algebra, in which compatibility with the Lie algebroid structure on A can be
formulated as a commutation condition. The details of this procedure can be
found in Section 3 of [Roy99], but we describe the outline.

Given the graded manifold A∗[1], we can consider the graded manifold T ∗[2]A∗[1].
As ordinary cotangent bundles, this graded manifold carries a symplectic form,
which has degree 2 in this case. To avoid going into details about this, we
will work with the corresponding dual structure, which is a 2-Poisson algebra
structure on C∞(T ∗[2]A∗[1]) as in [CFL06] and can be described explicitly by
its properties. The additional property this Poisson bracket has as it comes
from a symplectic form, is that there is a Darboux-like theorem for the Poisson
bracket [Cue21].
We summarise the properties of this graded manifold that we will use in the
following proposition:

Proposition 3.5.1 ([Roy99, AN13, Cue21]). The 2-Poisson algebra

C∞(T ∗[2]A∗[1])

satisfies the following properties.

i) C∞(T ∗[2]A∗[1]) is a (Z≥0 × Z≥0)-bigraded algebra: as

C∞(T ∗[2]A∗[1]) = SC∞(A∗[1])(X(A∗[1])[−2]),

the bidegree (p, q)-part is given by

Sp
C∞(A∗[1])(X(A∗[1])[−2])p+q

ii) The Poisson bracket is non-degenerate. Moreover, the Poisson bracket is
homogeneous of bidegree (−1,−1) with respect to the bigrading.

iii) The Poisson bracket extends the bracket of vector fields on A∗[−1]: any
δ ∈ X(A∗[1]) gives rise to fδ of bidegree (1, |δ| + 1), compatible with the
Lie bracket.
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iv) The Lie algebroid structure dA on A gives rise to an element ΠdA
∈

C∞(T ∗[2]A∗[1]) of bidegree (2, 1) as follows: as fdA
defines a self-

commuting element of C∞(T ∗[2]A[1]) and there is a canonical sym-
plectomorphism T ∗[2]A∗[1] ∼= T ∗[2]A[1], we get an element ΠdA

∈
C∞(T ∗[2]A∗[1]) satisfying {ΠA,ΠA} = 0.

v) The pair ((A, dA), (A∗, dA∗)) is a Lie bialgebroid if and only if {fdA∗ ,ΠdA
} =

0.

vi) The action of dA∗ on g ∈ C∞(A∗[1]) = Γ(S(A[−1])) is given by

dA∗(g) = {fdA∗ , g}.

vii) ΠdA
encodes the Schouten-Nijenhuis extension of the bracket on Γ(A) to

C∞(A∗[1]): given two homogeneous functions f, g ∈ C∞(A∗[1]),

[f, g]A = (−1)|f |−1{{ΠdA
, f}, g}.

Remark 3.5.2. In classical terms, the compatibility condition between dA∗

and dA can be expressed as follows: for f, g ∈ C∞(M), X,Y ∈ Γ(A),

[dA∗(f), g]A = [f, dA∗(g)]A,

dA∗ [X, f ]A = [dA∗(X), f ]A + [X, dA∗(f)]A,

dA∗ [X,Y ]A = [dA∗(X), Y ]A + [X, dA∗(Y )]A,

as a consequence of the Jacobi identity for {−,−}.

3.5.1.2 The ingredients

We check that we are in the setting of assumptions 3.3.17. Fix the Lie algebroid
(A, dA).

i) Proposition 3.5.1 now tells us that if we set

gLbA := C∞(T ∗[2]A∗[1])(≥1,≥1)[1, 1],

we have a differential bigraded Lie algebra, with differential {ΠdA
,−}

of bidegree (1, 0). Lie algebroid structures dA∗ on A∗ such that
((A, dA), (A∗, dA∗)) is a Lie bialgebroid are Maurer-Cartan elements of
bidegree (0, 1). Note that because of the bigrading, the Maurer-Cartan
equation for fdA∗ ∈ C∞(T ∗[2]A∗[1])[1, 1]

{ΠdA
, fdA∗ } + 1

2{fdA∗ , fdA∗ } = 0
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breaks up into two components: the bidegree (1, 1)-part, which is

{ΠdA
, fdA∗ } = 0,

and the bidegree (0, 2)-part, which is

{fdA∗ , fdA∗ } = 0.

We would like to apply the main theorem in this setting, but as it is
formulated, it is not clear it can be applied, as we are not interested in
general Maurer-Cartan elements, but only those of bidegree (0, 1). The
naive thing to do here would be to take the graded Lie algebra gLbA by
forgetting the bigrading and only caring about the total degree (where we
restrict to those where the unshifted bidegree is at least (1, 1)). We show
that this works.

ii) Let p ∈ M . We now define the Lie subalgebra gLbA(p, k) corresponding
to fixed points of order k ≥ 0. In bidegrees (0, i) for i = 0, 1, 2 we see that
g

(0,i)
LbA = X(A∗[1])i. So we set

g
(0,i)
LbA(p, k) := X(A∗[1])i

p,i(k−1)+1,

as in Section 3.4.1. The compatibility with the Lie algebroid structure
on A will be an extra condition on the cocycles in the quotient complex.
Now set g

(1,0)
LbA (p, k) = g

(1,0)
LbA , g

(2,0)
LbA (p, k) = g

(2,0)
LbA , and

g
(1,1)
LbA (p, k) =

{
Π ∈ g

(1,1)
LbA | {{Π, f}, g} ∈ Ik−j

p C∞(A∗[1])j

∀f, g ∈ C∞(A∗[1])≤1, j = |f | + |g|
}
.

This defines a differential graded Lie subalgebra:

Lemma 3.5.3. For i = 0, 1, 2, let gi
LbA(p, k) =

⊕i
j=0 g

(j,i−j)
LbA (p, k). Then

{g0
LbA(p, k), gi

LbA(p, k)} ⊆ gi
LbA(p, k),

{g1
LbA(p, k), g1

LbA(p, k)} ⊆ g2
LbA(p, k).

Remark 3.5.4. The only space which is unknown to us at this point is
the g

(1,1)
LbA /g

(1,1)
LbA (p, k). By picking an open neighborhood of p ∈ M over

which A trivializes, we see that

g
(1,1)
LbA /g

(1,1)
LbA (p, k) ∼= Jk−1

p (S2(TM)) ⊕ Jk−2
p (Hom(A⊗ T ∗M,A))

⊕ Jk−3
p (Hom(S2(A[1]), S2(A[1]))).
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iii) The splittings exist for the same reason as for Lie algebroids.

iv) Now pick a Lie algebroid structure dA∗ on A∗ such that ((A, dA), (A∗, dA∗))
is a Lie bialgebroid structure, and some p ∈ M is a fixed point of order k.

We now check that the data satisfies the assumptions 3.3.17.

a) We pick the following topologies:

- On g0
LbA, we pick the C∞-topology,

- On g1
LbA, we pick the C2k−1-topology,

- On g2
LbA, we pick the C2k−2-topology.

b) As the (2k − 2)-jet of {ΠA, X} depends linearly on the (2k − 1)-jet of X,
{ΠA,−} is continuous.

c) The continuity of [−,−] : g1
LbA × g1

LbA → g2
LbA holds for the same reasons

as in 3.4.1.

d) It remains to understand the gauge action. It is clear that g
(0,0)
LbA

∼=
CDO(A). Take X ∈ g

(0,0)
LbA and (Q,Π) ∈ g1

LbA = g
(0,1)
LbA ⊕ g

(1,0)
LbA .

The gauge equation then becomes

d

dt
(Qt,Πt) = ({X,Qt}, {X,Πt} − {ΠA, X}), (Q0,Π0) = (Q,Π).

For the purposes of interpreting the main theorem it is sufficient to consider
only the first component: as g

(1,0)
LbA (p, k) = g

(1,0)
LbA the second component

of the conclusion holds no information. The first component however,
is simply the same as the gauge action for ordinary Lie algebroids: the
take-away message is that

(Qt,Πt) ∈ g1
LbA(p, k) ⇐⇒ ϕ

σ(X)
t (p) is a fixed point of Qt.

Here σ(X) ∈ X(M) is the symbol of the differential operator X.
Consequently, an open neighborhood of 0 ∈ g0

LbA/g
0
LbA(p, k) ∼= TpM

corresponds to an open neighborhood of p ∈ M .

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.

Remark 3.5.5.
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i) When k = 1, the cohomology group

H1
(
gLbA/gLbA(p, 1), {ΠdA

,−} + {fdA∗ }
)

is a subspace of H1
CE(A∗

p, TpM), which is the cohomology group
appearing in Theorem 3.2.8: the coboundaries remain unchanged,
while the cocycles are the Chevalley-Eilenberg cocycles α ∈ Ap⊗TpM ,
for which (ρA,p⊗id)(α) ∈ TpM⊗TpM is skew-symmetric. For general
k ≥ 1, there is an injective map

H1 (gLbA/gLbA(p, k), {ΠdA
,−}.+ {fdA∗ ,−}

)
↪→ H1

(
gLA/gLA(p, k), {dA∗,−}

)
,

but for k ≥ 1 the image is not as simple to describe. This is what we
should expect: indeed, if a fixed point is stable for all Lie algebroid
structures, it should in particular be stable for a subclass of Lie
algebroid structures.

ii) The approach taken here to obtain the right graded Lie algebra might
seem indirect, and a seemingly more direct approach would be to
replace (C∞(T ∗[2]A∗[1]))(1,2) by the kernel of the vertical differential
{ΠdA

,−}. In order to make sure this is well-defined, one would also
have to restrict the functions in bidegree (1,1) to those which are
in the kernel of the vertical differential. As these are not given by
the sections of some vector bundle over M in general, we would have
less control over the objects we work with.

3.5.1.3 Applying the main theorem

Applying the main theorem to g = gLbA, h = gLbA(p, k) yields:
Theorem 3.5.6. Let (A, dA) be a Lie algebroid over M , and (A∗, dA∗) a Lie
algebroid defined on the dual vector bundle such that ((A, dA), (A∗, dA∗)) is a
Lie bialgebroid. Let p ∈ M be a fixed point of order k for k ≥ 0 of dA∗ , that is,
fdA∗ ∈ g

(0,1)
LbA (p, k). Assume that

H1
(
gLbA/gLbA(p, k), {ΠdA

,−} + {fdA∗ ,−}
)

= 0,

where ΠdA
, fdA∗ are as in Proposition 3.5.1. Then for every open neighborhood

U of p ∈ M , there exists a C2k−1-neighborhood U of dA∗ ∈ g1
LbA such that for

any Lie algebroid structure Q ∈ U compatible with dA, there is a family I in U
of fixed points of order k of Q parametrized by an open neighborhood of

0 ∈ H0(gLbA/gLbA(p, k), {ΠdA
,−} + {fdA∗ ,−}).
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3.5.1.4 Poisson manifolds as Lie bialgebroid structures

In this section we apply Theorem 3.5.6 to the case where A = TM with its
standard Lie algebroid structure dA = ddR. In this case, Lie algebroid structures
on T ∗M compatible with ddR are in bijection with Poisson structures, as was
pointed out in [Roy02, Corollary 5.3]. We briefly sketch the correspondence.

Lemma 3.5.7. Let A = TM , with dA = ddR being the standard Lie algebroid
structure on TM . Then a Lie algebroid structure dT ∗M on T ∗M such that
((TM, ddR), (T ∗M,dT ∗M )) is a Lie bialgebroid structure is equivalent to a
Poisson structure on M .

Sketch of proof. Given a Poisson structure π ∈ X2(M), the usual Lie algebroid
structure on T ∗M is compatible with the de Rham differential. Conversely,
given any Lie algebroid structure dT ∗M on T ∗M compatible with ddR, the map

πdT ∗M
: C∞(M) × C∞(M) → C∞(M)

given by
πdT ∗M

(f, g) := [dT ∗M (f), g]

is a Poisson structure for which the induced Lie algebroid structure on T ∗M is
dT ∗M . Here the bracket on the right hand side is the usual Schouten-Nijenhuis
bracket.

In particular, this implies that Theorem 3.5.6 gives a result for Poisson manifolds.
The rest of this section is dedicated to showing that this is in fact equivalent
to the result obtained in [DW06]. For this we show that the vanishing of the
cohomologies are equivalent conditions.

Given a Poisson structure π on M such that its k − 1-jet at p ∈ M vanishes,
consider the graded Lie subalgebra given by

n⊕
j=1

I1+j(k−1)
p Xj(M),

where n = dim(M). Using the reasoning from Section 3.4.1.3, one can show
that the cohomological assumption in [DW06, Theorem 1.2] can be restated as
follows.

Lemma 3.5.8. The vanishing of the cohomology in the hypothesis of [DW06,
Theorem 1.2] is equivalent to

H2(X•(M)/I1+(•−1)(k−1)
p X•(M), [π,−]) = 0.
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The cohomology H1(gLbA/gLbA(p, k), {ΠddR
,−} + {f[π,−],−}) from Theorem

3.5.6 when applied to A = TM with the standard Lie algebroid structure is
isomorphic to the cohomology stated in the lemma:

Proposition 3.5.9. Let π ∈ X2(M) be as above. The injective differential
graded Lie algebra map H : (X•(M)[1], [π,−]) → (g•

LbA, {ΠddR
,−} + {f[π,−],−})

X(M) g0
LbA

X2(M) g
(0,1)
LbA ⊕ g

(1,0)
LbA

X3(M) g
(0,2)
LbA ⊕ g

(1,1)
LbA ⊕ g

(2,0)
LbA

[π,−]

f[•,−] (
{f[π,−],−}

{ΠddR
,−})

)

[π,−]

(
f[•,−]

0

)
{f[π,−],−} 0

{ΠddR
,−} {f[π,−],−}

0 {ΠddR
,−}

f[•,−]

0
0



descends to an injective chain map:

X(M)/IpX(M) g0
LbA/g

0
LbA(p, k)

X2(M)/Ik
pX

2(M) g
(0,1)
LbA /g

(0,1)
LbA (p, k)

X3(M)/I2k−1
p X3(M) g

(0,2)
LbA /g

(0,2)
LbA (p, k) ⊕ g

(1,1)
LbA /g

(1,1)
LbA (p, k)

[π,−]

f[•,−]

{f[π,−],−}

[π,−]

f[•,−]

(
{f[π,−],−}

{ΠddR
,−}

)(
f[•,−]

0

)
. (3.18)

Moreover, the top row of (3.18) is an isomorphism and the middle row is an
isomorphism when restricted to cocycles. Consequently, the induced map on
middle cohomology is an isomorphism.

Proof. It is straightforward to see that the map descends to an injective chain
map on the quotients.
Note that both spaces in the top row of (3.18) can be identified with TpM , and
that the map is compatible with this identification.

As the middle map is injective and it preserves the cocycles, it is sufficient to
show that it is surjective on cocycles. Let fδ + g

(0,1)
LbA (p, k) be a cocycle on the
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right hand side for some δ ∈ X1(T ∗M [1]). Motivated by Lemma 3.5.7, define
the bivector field on M given by

πδ(f, g) := 1
2([δ(f), g] − [δ(g), f ])

for f, g ∈ C∞(M).
Using the second component of the cocycle condition in (3.18) stating that
{ΠddR

, fδ} ∈ g
(1,1)
LbA (p, k), it follows that

fδ − f[πδ,−] ∈ g
(0,1)
LbA (p, k),

so the class of fδ lies in the image of H1. It remains to show that πδ + Ik
pX

2(M)
is a cocycle. As

{f[π,−], f[πδ,−]} = f[[π,πδ],−] ∈ g
(0,2)
LbA (p, k).

Using injectivity of H, it follows that [π, πδ] ∈ I2k−1
p X3(M), concluding the

proof.

We therefore obtain:

Corollary 3.5.10. Theorem 3.5.6 applied to (A, dA) = (TM, ddR) is equivalent
to [DW06, Theorem 1.2].

3.5.1.5 Poisson manifolds with a Poisson hypersurface as Lie bialgebroid
structures

Here we apply Theorem 3.5.6 to the case where A = ♭TM . Let M be a smooth
manifold, and let Z ⊆ M be a smooth hypersurface. Denote by A = ♭TM the
b-tangent bundle, with its standard Lie algebroid structure dA (see [GMP14]
for details). Its sections are defined by

Γ(A) := {X ∈ X(M) | X|Z ∈ X(Z)},

the anchor is the inclusion, which uniquely determines the bracket. For M a
manifold with boundary, the b-tangent bundle for Z = ∂M was introduced in
[Mel93].

For A = ♭TM with the Lie algebroid structure as described above, we can
characterize Lie algebroid structures dA∗ on A∗ such that ((A, dA), (A∗, dA∗))
is a Lie bialgebroid explicitly, and give a more direct description of the relevant
cohomology. The analogue of Lemma 3.5.7 holds in this setting, of which we
omit the proof.
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Lemma 3.5.11. Let A = ♭TM with its standard Lie algebroid structure dA.
A Lie algebroid structure dA∗ on A∗ such that ((A, dA), (A∗, dA∗)) is a Lie
bialgebroid is the same as a self-commuting section πdA∗ ∈ Γ(∧2A). Moreover,
self-commuting π ∈ Γ(∧2A) are in bijection with Poisson structures on M , such
that Z is a Poisson submanifold.

Using this, Theorem 3.5.6 implies the following.

Theorem 3.5.12. Let (M,Z) be a manifold with a given hypersurface Z. Let
A = ♭TM be the b-tangent bundle with its standard Lie algebroid structure. Let
k ≥ 1 be an integer, and let π ∈ Γ(∧2A) be a self-commuting element. Let
p ∈ M be a fixed point of order k of [π,−], which is the Lie algebroid structure
on A∗, and assume that

H1
(
gLbA/gLbA(p, k), {ΠdA

,−} + {fdA∗ ,−}
)

= 0.

Then for every neighborhood U of p, there is a C2k−1-neighborhood U of π such
that for every self-commuting π′ ∈ U there is a family I in U of fixed points of
order k of [π′,−] parametrized by an open neighborhood of

0 ∈ H0
(
gLbA/gLbA(p, k), {ΠdA

,−} + {fdA∗ ,−}
)
.

Next, we spell out what the requirement that some point p ∈ M is a fixed point
of order k of the Lie algebroid structure [π,−] means directly in terms of π,
describe the relevant cohomology in more detail for fixed points order 1, and
improve the result in this case using remark 3.3.21ix).
When considering fixed points p ∈ M of the corresponding Lie algebroid
structure on A∗, we distinguish two types:

- p ∈ Z,

- p ∈ M \ Z.

The second case does not yield anything new: as the problem is local, and
A|M\Z = T (M \Z) as Lie algebroids, we recover the result for Poisson structures
of the previous section.
The following lemma describes what the notion of fixed point of order k of
[π,−] implies about π.

Lemma 3.5.13. Let π ∈ Γ(S2(A[−1])), and p ∈ Z ⊆ M . Then [π,−] ∈
g

(0,1)
LbA (p, k) if and only if π ∈ Ik

p Γ(S2(A[−1])).
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Moreover, in this case the Poisson bracket {−,−}π on C∞(M) induced by
applying ρA to π satisfies

{IZ , C
∞(M)}π ⊆ IZ · Ik

p ,

{C∞(M), C∞(M)}π ⊆ Ik
p .

Proof. As the statement is local, we assume that M = Rn, and Z = {x1 = 0}.
Let {ei}n

i=1 be the induced frame on A, with

ρ(ei) :=
{
x1∂x1 i = 1,
∂xi i ̸= 1.

Write in terms of this frame

π = πji

2 ei · ej ,

where · is the shifted symmetric product and πij = −πji ∈ C∞(M).
Assume that [π,−] ∈ g

(0,1)
LbA (p, k). This implies that for all functions f ∈ C∞(M),

we have

[π, f ] = πji

2 [ei · ej , f ]

= πji

2 (ρA(ej)(f)ei − ρA(ei)(f)ej)

=
n∑

i=2
π1i(∂xi(f)e1 − x1∂x1(f)ei) +

∑
i,j≥2

πji

2 (∂xj (f)ei − ∂xi(f)ej) ∈ Ik
p Γ(A),

As this holds for all f ∈ C∞(M), we get πji ∈ Ik
p for all i, j.

Conversely, if π ∈ Ik
p Γ(S2(A[−1])), the above computation shows that [π, f ] ∈

Ik
p Γ(A) for all f ∈ C∞(M). Moreover, for ei ∈ Γ(A),

[π, el] =

−x1 ∂x1 (πji)
2 ei · ej l = 1,

− ∂
xl (πji)

2 ei · ej l ̸= 2,

from which it follows that [π, ei] ∈ Ik−1
p Γ(S2(A[−1])), showing that [π,−] ∈

g
(0,1)
LbA (p, k).

The assertion about the induced Poisson bracket on C∞(M) follows from the
above computation.
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For the rest of the section, assume that p ∈ Z is a fixed point of order 1 of the
Lie algebroid structure (A∗, [π,−]A) for some self-commuting π ∈ Γ(S2(A[−1])).
In this case, we can give a more explicit description of the cohomology appearing
in the theorem. As the problem is local around p ∈ Z ⊆ M , we assume that
M = Rn, p = 0, and Z = {x1 = 0}. Consider the induced frame {ei}n

i=1 for A
as in the proof of Lemma 3.5.13, with dual frame {ei}n

i=1. Following remark
3.5.5i) the cochain spaces are given as follows. In degree 0, we have TpM , while
in degree 1, we can restrict ourselves to the span of

{e1⊗∂xj ∈ Ap⊗TpM | i = 1, . . . , n}∪{ei⊗∂xj −ej⊗∂xi | 2 ≤ i, j ≤ n} ⊆ Ap⊗TpM,

by the skew-symmetry requirement. Finally, in degree 2, we have S2(Ap[−1]) ⊗
TpM . The differentials are given by the Chevalley-Eilenberg formulas as in
Definition 3.2.5.

Example 3.5.14. Let M = R3, with coordinates (x, y, z), and Z = {x = 0}.
Let

π = xe2 ∧ e3 + ye3 ∧ e1 + ze1 ∧ e2.

It is easy to see that [π, π] = 0. The corresponding Lie algebroid structure on
A∗ has a fixed point of order 1 in the origin p. By the discussion above, to
compute the cohomology in degree 1, it is sufficient to restrict ourselves to the
subspace of Ap ⊗TpM generated by {e1 ⊗∂x, e1 ⊗∂y, e1 ⊗∂z, e2 ⊗∂z −e3 ⊗∂y}.
One can show that the cohomology

H1
(
gLbA/gLbA(p, k), {ΠA,−} + {fdA∗ ,−}

)
,

as described in remark 3.5.5 vanishes, and hence the fixed point is stable.

The condition that

H1
(
gLbA/gLbA(p, k), {ΠA,−} + {fdA∗ ,−}

)
= 0

is only a sufficient condition, but not a necessary one, as the following example
shows.

Example 3.5.15. For M = R2, Z = {x = 0}, consider π = f(x, y)e1 ∧ e2 for
some f ∈ C∞(M), with f(p) = 0, dfp ̸= 0. The equation [π, π] = 0 is trivially
satisfied. As 0 ∈ R is a regular value of f , we know that p is a stable fixed point
of order 1.
We now compute the relevant cohomology. By the description above, we can
restrict ourselves to the span of e1 ⊗ ∂x, e1 ⊗ ∂y.
Denote the corresponding differential by dπ. Then

dπ(e1 ⊗ ∂x) = f(p)∂x = 0,
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and
dπ(e1 ⊗ ∂y) = −x∂xf(x, y)

∣∣
(x,y)=p

∂y = 0.

So both elements are cocycles. To see what the coboundaries are, we compute
dπ of TpM .

dπ(∂x) = −∂xf(p)e1 ⊗ ∂y,

dπ(∂y) = −∂yf(p)e1 ⊗ ∂y,

showing that e1 ⊗∂x is never a coboundary, while e1 ⊗∂y is always a coboundary.
Consequently, the relevant cohomology never vanishes when dimM = 2.

More generally, it is true in every dimension that e1 ⊗∂x1 is never a coboundary.
In fact, looking at the proof of Lemma 3.5.13, we see that when we take any
π ∈ Γ(S2(A[−1])), the class of

[π,−] ∈ g
(0,1)
LbA /g

(0,1)
LbA (p, 1) ∼= Ap ⊗ TpM

takes values in the subspace spanned by

K = {ei ⊗ ∂j ∈ Ap ⊗ TpM | (i, j) ̸= (1, 1)}. (3.19)

Note that this is an instance of remark 3.3.21ix), hence we can improve the
result by putting a milder restriction on the relevant cohomology, by replacing
Ap ⊗ TpM by K in the proof of Theorem 3.5.6 for k = 1. Fix coordinates near
p as in the proof of Lemma 3.5.13.

Theorem 3.5.16. Let π ∈ Γ(S2(A[−1])), with [π, π] = 0. Assume p ∈ M is
such that πp = 0. If

H1
red = 0,

as defined in remark 3.3.21ix) for K as in equation (3.19), the conclusion of
Theorem 3.5.12 holds for k = 1.

Remark 3.5.17. Note that Theorem 3.5.16 does not guarantee the existence
of a fixed point in Z. We will revisit this in example 3.5.52.

3.5.1.6 Poisson-Nijenhuis structures as Lie bialgebroids

Another class of Lie bialgebroids comes from Poisson-Nijenhuis structures as
shown in [KS96]. We will give two results regarding stability of fixed points of
Poisson structures, compatible with a given Nijenhuis tensor N . Theorem 3.5.20
deals with stability for nearby Lie algebroid structures on T ∗M compatible
with N in the Lie bialgebroid sense, while Theorem 3.5.21 deals with nearby
Poisson structures which form a Poisson-Nijenhuis pair with N .

Classically, Poisson-Nijenhuis structures are the following.
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Definition 3.5.18 ([KSM90]). Let M be a manifold. A Poisson-Nijenhuis
structure is a pair (π,N), where

i) π ∈ X2(M),

ii) N ∈ Γ(End(TM)),

satisfying

a) [π, π] = 0,

b) [N,N ]F N = 0,

c) π♯ ◦N∗ = N ◦ π♯,

d) [α, β]Nπ = [N∗α, β]π + [α,N∗β]π −N∗[α, β]π for all α, β ∈ Ω1(M).

In the definition above, [−,−]F N is the Frölicher-Nijenhuis bracket, and for a
bivector field π, the bracket [−,−]π is the one induced on Ω1(M). Note that
Nπ is the bivector field defined by the equation (Nπ)♯ = N ◦ π♯, which is
skew-symmetric by c).
Note that N∗ can be extended as a derivation to Ω•(M), the graded algebra of
all differential forms on M . As shown in [KSM90], condition b) implies that

[d,N∗] ∈ X1(TM [1])

is a Lie algebroid structure on TM . Denote this Lie algebroid by (A, dN ).
By [KS96, Proposition 3.2], the compatiblity conditions between π, N can be
expressed as follows.

Proposition 3.5.19 ([KS96]). Let M be a manifold, π ∈ X(M) and N ∈
Γ(End(TM)). Then (π,N) is a Poisson-Nijenhuis structure if and only if
((A, dN ), (A∗, [π,−])) is a Lie bialgebroid.

Theorem 3.5.6 now yields a stability criterium for fixed points of Lie algebroid
structures on T ∗M near a Poisson-Nijenhuis structure:

Theorem 3.5.20. Let M be a manifold equipped with a Poisson-Nijenhuis
structure (π,N) and p ∈ M such that the (k− 1)-jet of π vanishes at p. Assume
that

H1
(
gLbA/gLbA(p, k), {ΠdN

,−} + {f[π,−],−}
)

= 0,

where ΠdN
corresponds to the Lie algebroid structure dN on TM induced by N .

Then for every neighborhood U ⊆ M of p, there is a C2k−1-neighborhood U of
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[π,−] ∈ X1(A∗[1]) such that for any Lie algebroid structure Q ∈ U such that
((A, dN ), (A∗, Q)) is a Lie bialgebroid there is a family I in U of fixed points of
order k of Q parametrized by a neighborhood of

0 ∈ H0
(
gLbA/gLbA(p, k), {ΠdN

,−} + {f[π,−],−}
)
.

Note that the conclusion of the theorem for Lie bialgebroids is stronger than the
conclusion that all nearby π′ such that (π′, N) is a Poisson-Nijenhuis structure
must have a fixed point of order k near p. For an arbitrary Nijenhuis tensor
N , there might be Lie algebroid structures near [π,−] which do not come from
Poisson structures. However, by making different choices for g and h in the
main theorem, we can obtain a result which deals with the problem of stability
within the realm of Poisson-Nijenhuis structures.
One way to do this is to consider the Lie subalgebra gP N of gLbA given by the
image of the inclusion

Xi+1(M) ↪→ g
(0,i)
LbA

as in Section 3.5.1.4. For the subalgebra gP N (p, k) corresponding to fixed points,
simply restrict to the intersection of g(0,i)

LbA(p, k) with the image of the inclusion
above. The cochain spaces gP N/gP N (p, k) then take the form

g0
P N/g

0
P N (p, k) ∼= TpM,

g1
P N/g

1
P N (p, k) ∼= Jk−1

p (TM)

g2
P N/g

2
P N (p, k) ∼= J2k−2

p (TM) ⊕ g
(1,1)
LbA /g

(1,1)
LbA (p, k).

Applying Theorem 3.3.20 to this data, we find:

Theorem 3.5.21. Let M be a manifold equipped with a Poisson-Nijenhuis
structure (π,N) and p ∈ M such that the (k − 1)-jet of π vanishes at p. If

H1
(
gP N/gP N (p, k), {ΠdN

,−} + {f[π,−],−}
)

= 0,

then for every neighborhood U ⊆ M of p, there is a C2k−1-neighborhood U of
π ∈ X2(M) such that for any Poisson structure π′ ∈ U such that (π′, N) is a
Poisson-Nijenhuis structure there is a family I in U of fixed points of order k
of π′ parametrized by a neighborhood of

0 ∈ H0
(
gP N/gP N (p, k), {ΠdN

,−} + {f[π,−],−}
)
.

Remark 3.5.22.
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- For k = 1, the cohomology can be described explicitly: unpacking the
definition of

H1
(
gP N/gP N (p, k), {ΠdN

,−} + {f[π,−],−}
)

shows that it is the cohomology of the complex

TpM S2(TpM [−1]) S3(TpM [−1]) ⊕ S2(TpM)[π,−]

(
[π,−]
dN

)
,

where for π′ ∈ S2(TpM [−1]),

dN (π′) = (Nπ′♯)sym

is the symmetric part of Nπ′♯. To compute the middle cohomology,
we may then restrict ourselves to those cocycles, for which Nπ′♯ is still
skew-symmetric.

- Note that by construction there is an injective map

H1 (gP N/gP N (p, k), δ
)
↪→ H1 (gLbA/gLbA(p, k), δ

)
,

where δ = {ΠdN
,−} + {f[π,−],−}.

An important example of a Nijenhuis tensor is a complex structure on a manifold
M : it is a map J : TM → TM with J2 = −id, such that [J, J ]F N = 0. It is
shown in [LGSX08, Theorem 2.7] that a Poisson-Nijenhuis structure (π, J) is
equivalent to Jπ♯ + iπ♯ ∈ Γ(∧2TMC) being a holomorphic Poisson structure.
Applying Theorem 3.5.21 yields:

Corollary 3.5.23. If H1
(
gP N/gP N (p, k), {ΠdJ

,−} + {f[π,−],−}
)

= 0, every
holomorphic Poisson structure near Jπ# + iπ# has a family of fixed points of
order k near p, parametrized by a neighborhood of

0 ∈ H0
(
gP N/gP N (p, k), {ΠdJ

,−} + {f[π,−],−}
)
.

Remark 3.5.24. Note that if a holomorphic Poisson structure vanishes up
to first order at a point (k = 1), the (1, 0)-cotangent space at p of M inherits
a complex Lie algebra structure gC. As pointed out by Marius Crainic, the
cohomology

H1
(
gP N/gP N (p, 1), {ΠdJ

,−} + {f[π,−],−}
)

is isomorphic to the complex Lie algebra cohomology

H2
CE(gC,C).
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Example 3.5.25. We compute an explicit example of Corollary 3.5.23. Consider
M = R4 ∼= C2, with coordinates (x1, y1, x2, y2) = (z1, z2), where

zj = xj + iyj ,

for j = 1, 2. On M consider the real Poisson structure

π = y1(∂x1 ∧ ∂x2 − ∂y1 ∧ ∂y2) − x1(∂x1 ∧ ∂y2 + ∂y1 ∧ ∂x2),

and let J be the standard complex structure induced by multiplication by i.
Then (π, J) is a Poisson-Nijenhuis structure (π is the imaginary part of the
holomorphic bivector field z1∂z1 ∧ ∂z2), and π vanishes in the origin. In this
case the relevant cohomology

H1
(
gP N/gP N (p, k), {ΠA,−} + {f[π,−],−}

)
vanishes, and for nearby Poisson structures π′ such that (π′, J) is Poisson-
Nijenhuis, there is a q near the origin such that π′ vanishes in q. Note that
this is really only the case for those Poisson structures for which (π′, J) is
Poisson-Nijenhuis: the bivector field

πϵ = π + ϵ∂x2 ∧ ∂y2

is Poisson, but non-vanishing.

3.5.2 Higher order fixed points of Courant algebroids

In this section we apply the main theorem to Courant algebroids, and obtain a
stability result along the same lines as before.

3.5.2.1 Courant algebroids

Classically, a Courant algebroid is defined as follows. See e.g. [LBM09].

Definition 3.5.26. A Courant algebroid over a manifold M is a quadruple
(E, ⟨−,−⟩, ρ, [[−,−]]), where

i) E is a vector bundle over M ,

ii) ⟨−,−⟩ : E × E → R is a fiberwise symmetric, non-degenerate bilinear
pairing,

iii) ρ : E → TM is a bundle map,
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iv) [[−,−]] : Γ(E) × Γ(E) → Γ(E) is an R-bilinear map

satisfying for x, y, z ∈ Γ(A)

a) [[x, [[y, z]]]] = [[[[x, y]], z]] + [[y, [[x, z]]]],

b) ρ(x)⟨y, z⟩ = ⟨[[x, y]], z⟩ + ⟨y, [[x, z]]⟩,

c) [[x, y]] + [[y, x]] = ρ∗d⟨x, y⟩, where ρ∗ : T ∗M → E∗ is the dual map to ρ,
and we identify E∗ ∼= E via ⟨−,−⟩.

This definition implies among others the following property, as can be found in
e.g. [LBM09].

Lemma 3.5.27. The bracket [[−,−]] satisfies the Leibniz rule in the right entry,
i.e. for x, y ∈ Γ(E), f ∈ C∞(M),

[[x, fy]] = f [[x, y]] + ρ(x)(f)y.

Consequently, ρ is a morphism of brackets.

This means that a Courant algebroid gives rise to a foliation on M , and it
makes sense to speak of fixed points of a Courant algebroid.
Due to D. Roytenberg [Roy02], there is a more concise definition, which is closer
to our approach here, making use of graded geometry.
Fix a vector bundle E with a non-degenerate, symmetric bilinear pairing ⟨−,−⟩.
Then:

Proposition 3.5.28 ([Roy02]). There is a degree 2 graded manifold ME,⟨−,−⟩
associated to the pseudo-Euclidean vector bundle (E, ⟨−,−⟩), which is symplectic:
its functions C∞(ME,⟨−,−⟩) are equipped with a degree −2 Poisson bracket
{−.−}, which is non-degenerate. Conversely, any symplectic degree 2 graded
manifold arises in this way.
Moreover, Courant algebroid structures on (E, ⟨−,−⟩) are in 1-1 correspondence
with functions Θ ∈ C∞(ME,⟨−,−⟩)3 satisfying {Θ,Θ} = 0.

3.5.2.2 The ingredients

We check that we are in the setting of assumptions 3.3.17.

i) An alternative description of a degree −2 Lie bracket is a degree 0 Lie
bracket on the algebra C∞(ME,⟨−,−⟩)[2]. This is now a graded Lie
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algebra gCA := C∞(ME,⟨−,−⟩)[2] such that g1
CA = C∞(ME,⟨−,−⟩)3, and

its Maurer-Cartan elements are precisely Courant algebroid structures
on E. Intuitively, elements of gi

CA = C∞(ME,⟨−,−⟩)i+2 consist of graded
symmetric products of elements of Γ(E) and X(M), the former counting
as degree 1, while the latter counts as degree 2. This can be made precise
by picking a connection ∇ on E respecting the pairing. Then we can
identify

C∞(ME,⟨−,−⟩) ∼= Γ(S(E[−1] ⊕ TM [−2])).
Here we implicitly use that ⟨−,−⟩ induces an isomorphism E ∼= E∗.
In particular, every degree is given by the sections of some vector bundle.

ii) Similar to Lie algebroids, we define the notion of p ∈ M being a fixed
point of order k ≥ 0 of a Courant algebroid structure, and show that there
is a graded Lie subalgebra gCA(p, k), whose Maurer-Cartan elements are
those Courant algebroid structures with for which p ∈ M is a fixed point
of order k.

Definition 3.5.29. Let (E, ⟨−,−⟩) be a vector bundle with a symmetric
non-degenerate pairing. Define for p ∈ M , l ≥ 0:

C∞(ME,⟨−,−⟩)2
p,l :=

{
X ∈ C∞(ME,⟨−,−⟩)2 | {X,C∞(M)} ⊆ I l

p, {X,Γ(E)} ⊆ I l−1
p Γ(E)

}
,

C∞(ME,⟨−,−⟩)3
p,l :=

{
X ∈ C∞(ME,⟨−,−⟩)3 | {X,C∞(M)} ⊆ I l

pΓ(E),

{X,Γ(E)} ⊆ C∞(ME,⟨−,−⟩)2
p,l

}
,

C∞(ME,⟨−,−⟩)4
p,l :=

{
X ∈ C∞(ME,⟨−,−⟩)4 | {X,C∞(M)} ⊆ C∞(ME,⟨−,−⟩)2

p,l,

{X,Γ(E)} ⊆ C∞(ME,⟨−,−⟩)3
p,l−1

}
.

Lemma 3.5.30. Setting

g0
CA(p, k) := C∞(ME,⟨−,−⟩)2

p,1,

g1
CA(p, k) := C∞(ME,⟨−,−⟩)3

p,k,

g2
CA(p, k) := C∞(ME,⟨−,−⟩)4

p,2k,

these subspaces satisfy

{g0
CA(p, k), gi

CA(p, k)} ⊆ gi
CA(p, k),

{g1
CA(p, k), g1

CA(p, k)} ⊆ g2
CA(p, k).
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Now we define:

Definition 3.5.31. Let (E,Θ) be a Courant algebroid, and let p ∈ M .
Let k ≥ 0 be an integer. We say that p is a fixed point of order k if
Θ ∈ C∞(ME,⟨−,−⟩)3

p,k.

Remark 3.5.32.
i) In the anchor-bracket description of a Courant algebroid, this means

that the anchor vanishes up to order k, and the bracket vanishes up
to order k − 1.

ii) For a Courant algebroid (E,Θ), the algebra C∞(ME,⟨−,−⟩) has
an explicit description in [CM21] in terms of multilinear maps
C•(E), which first appeared in [KW15], analogous to the deformation
complex of [CM08] for Lie algebroids. The Courant algebroid
structure Θ induces a differential on the algebra by {Θ,−}, and
in terms of the description in [CM21] this differential satisfies a de
Rham-type formula.

iii) In terms of the complex given in [CM21], these subspaces can be
described as follows. Omitting the argument ME,⟨−,−⟩, we have for
k = 2, 3, 4

(C∞)k
p,l

∼= {ω ∈ Ck(E) | ω(e1, . . . , ek−1,−) ∈ I l−1
p Γ(E∗),

σω(e1, . . . , ek−2) ∈ I l
pX(M) ∀e1, . . . , ek−1 ∈ Γ(E)}.

Remark 3.5.33. As before, we have isomorphisms of gi
CA/g

i
CA(p, k)

with various jet spaces at p. More precisely, after picking a coordinate
neighborhood of p such that (E, ⟨−,−⟩) is trivial as a pseudo-euclidean
vector bundle, we can make the following identifications.

g0
CA/g

0
CA(p, k) ∼= TpM

g1
CA/g

1
CA(p, k) ∼= Jk−1

p (E∗[−1] ⊗ TM) ⊕ Jk−2
p (S3(E∗[−1]))

g2
CA/g

2
CA(p, k) ∼= J2k−2

p (S2(E∗[−1]) ⊗ TM) ⊕ J2k−3
p (S4(E∗[−1])) ⊕ J2k−1

p (S2(TM)).

Remark 3.5.34. We can describe the cohomologyH1(gCA/gCA(p, 1), {Θ,−})
when p ∈ M is a fixed point (of order 1) of a Courant algebroid Θ on
(E, ⟨−,−⟩). Analogous to Lie algebroids, the Courant algebroid structure
gives rise to a Lie algebra structure on Ep := g, and this Lie algebra
acts on TpM by means of a representation with representation map
τ : g → End(TpM). Additionally, g has an invariant non-degenerate
pairing ⟨−,−⟩p, and the stabilizer Lie algebras gq for the representation
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are coisotropic for all q ∈ TpM . We can describe the cohomology appearing
in Theorem 3.5.36 explicitly in terms of g, ⟨−,−⟩p, TpM and τ . As we may
assume the bundle E is trivial, with a constant pairing, we can trivialize
the algebra of functions C∞(ME,⟨−,−⟩) canonically, and by unpacking the
definition of H1

(
gCA/gCA(p, k), {Θ,−}

)
we obtain the complex given by

TpM g∗[−1] ⊗ TpM S2(g∗[−1]) ⊗ TpM ⊕ S2(TpM) ⊗ (T ∗
pM ⊕ R).d0

(
d1

1

d1
2

)

Here we interpret J1
p (S2(TM)) ∼= S2(TpM) ⊗ (T ∗

pM ⊕ R), and view this
space as linear maps TpM ⊕ R → S2(TpM).
Now d0 and d1

1 are given by the standard Chevalley-Eilenberg formulas,
while d1

2 is given as follows: Let γ : g → TpM and let {ei}r
i=1 be a

basis of g, and {ei}r
i=1 the dual basis with respect to ⟨−,−⟩p. Then for

v ∈ TpM,λ ∈ R, we set

d1
2(γ)(v, λ) =

r∑
i=1

γ(ei) · τ(ei)(v) ∈ S2(TpM),

where · is the symmetric product.
d1

2 can be interpreted as follows: First note that End(TpM) ∼= T ∗
pM ⊗

TpM ∼= Xlin(TpM). In particular, using τ , one can construct the
transformation Lie algebroid on the trivial g-bundle over TpM . Now
if γ : g → TpM is Chevalley-Eilenberg cocycle, then τ + γ, which can be
interpreted as an affine action, defines a new Lie algebroid structure on
g×TpM analogous to [CF05, Proposition 4.1]. d1

2 infinitesimally measures
the failure of the stabilizers of this Lie algebroid to be coisotropic again,
serving as an infinitesimal obstruction to giving rise to a new Courant
algebroid structure on (E, ⟨−,−⟩), as shown in [LBM09].

iii) As the spaces are once again jet spaces of vector bundles at points, we
can pick the necessary splittings.

iv) Pick a Courant algebroid structure Θ on E such that p ∈ M is a fixed
point of order k.

We check that the data satisfies assumptions 3.3.17a)-e).

a) We pick the following topologies:

- On g0, we pick the C∞-topology,
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- On g1, we pick the C2k−1-topology,
- On g2, we pick the C2k−1-topology.

b) As ∂ = 0, it is continuous.

c) The bracket is continuous for the same reason as for Lie algebroids.

d) To understand the gauge action in g, we take a closer look at g0.

Lemma 3.5.35 ([Roy99]).

g0 ∼= CDO(E, ⟨−,−⟩),

the infinitesimal vector bundle automorphisms of E preserving the pairing.

One can show that the action is by vector bundle automorphisms, and
the analogue of Lemma 3.3.12 holds in this context. This identifies a
neighborhood of 0 ∈ g0

CA/g
0
CA(p, k) with a neighborhood of p ∈ M .

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.

3.5.2.3 Applying the main theorem

Let gCA and gCA(p, k) as above. Plugging this into the main theorem yields:

Theorem 3.5.36. Let (E,Θ) be a Courant algebroid over M . Let p ∈ M be a
fixed point of order k for k ≥ 0, that is, Θ ∈ g1

CA(p, k). Assume that

H1(gCA/gCA(p, k), {Θ,−}) = 0.

Then for every open neighborhood U of p ∈ M , there exists a C2k−1-neighborhood
U of Θ ∈ gCA such that for any Courant algebroid structure Θ′ ∈ U there is a
family I ⊆ U of fixed points of order k of Θ parametrized by an open neighborhood
of

0 ∈ H0(gCA/gCA(p, k), {Θ,−}).

Remark 3.5.37. We compare Theorem 3.5.36 with Theorems 3.4.30 and 3.5.6.

- There are some parallels between Theorems 3.5.6 and 3.5.36, as T ∗[2]A∗[1]
is a symplectic degree 2 manifold, and the function ΠA + fdA∗ induces
a Courant algebroid structure. However, the notion of fixed points is
different: whereas for a Courant algebroid, a point p ∈ M is fixed of
order k if in particular the anchor has vanishing k − 1-jet at p, for a fixed
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point p ∈ M of a Lie algebroid structure on A∗ only the anchor of A∗

is required to have vanishing k − 1-jet at p. When A = TM with its
standard Lie algebroid structure, this is especially clear: the Courant
algebroid structure on TM ⊕T ∗M has anchor id ⊕ π♯, which is surjective,
while Theorem 3.5.6 is about fixed points of π♯.

- Given a degree 2 graded manifold, it is non-canonically isomorphic to a
Lie 2-algebroid. In this case all one needs to make this identification is a
connection on E which is compatible with the pairing. The multibrackets
of the corresponding Lie 2-algebroid can be found in [JL19]. In particular,
one could also try to use this identification to get a stability result for
Courant algebroids, using only Theorem 3.4.30 if the induced brackets
satisfy the assumptions of the theorem. In this case the fixed point
p of order k for Θ would be of order (k, k) for the induced Lie 2-
algebroid structure QΘ. Note that this makes sense, as for k ≥ 2,
we have k ≤ 2k − 2, and for k = 1, there is no restriction on l. If
one is only interested in nearby Courant algebroids however, Theorem
3.5.36 is actually an improvement as the only independent operations
in a Courant algebroid are the anchor and the bracket. The unary
and ternary bracket are derived from this, which is reflected in the
fact that H1(gCA/gCA(p, k), {Θ,−}) only carries information about the
anchor and the bracket, while H1(gLnA/gLnA(p, (k, k), {Θ,−}) also carries
information about the unary and ternary bracket.
In terms of graded geometry, this can be interpreted as forgetting the
symplectic structure of the underlying graded manifold and considering all
homological vector fields, rather than just the symplectic (or Hamiltonian)
ones.

3.5.2.4 Examples

Example 3.5.38. According to [LBM09], any quadratic Lie algebra together
with a representation on a vector space with coisotropic stabilizer algebras gives
rise to a Courant algebroid. In particular, the origin will be a fixed point of
order 1.
One way to obtain a quadratic Lie algebra with a representation such that its
stabilizer algebras are coisotropic is as follows. Let g be any Lie algebra, and
V a representation of g with representation map ρ : g → End(V ). Let g∗ be
the linear of dual of g, equipped with the coadjoint representation. Then the
semi-direct product d := g⋉ g∗ is a quadratic Lie algebra with respect to the
standard pairing, and if we extend ρ to d trivially, this yields a representation
of d with coisotropic stabilizers.
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Following remark 3.5.34, the cohomology

H1(gCA/gCA(p, k), {Θ,−}) (3.20)

can now be described more explicitly, where Θ is the Courant algebroid structure
induced by ρ as in [LBM09]. The coboundaries coincide with the Chevalley-
Eilenberg coboundaries for the representation ρ of g, because g∗ acts trivially.
The same holds for the cocycles coming from g∗ ⊗ V . A map γ : g∗ → V is a
cocycle if and only if the following two conditions are satisfied:

- γ intertwines the coadjoint action and ρ,

- For some linear basis {ei}n
i=1 of g with corresponding dual basis {ei}n

i=1
of g∗, the expression

n∑
i=1

γ(ei) ⊗ ρ(ei)(v) ∈ ∧2V ⊆ V ⊗ V (3.21)

for all v ∈ V .

In particular, the cohomology (3.20) vanishes precisely when for any module
map γ : g∗ → V , the expression (3.21) has nonzero symmetric part.

Example 3.5.39. Let g be a simple Lie algebra, and let d = g ⋉ g∗ be the
semidirect product with its coadjoint representation as above. Let W be any
non-trivial irreducible representation of g for which the complexification is an
irreducible g ⊗ C-representation, and let V = g∗ ⊕W . Then we claim that the
cohomology as described in the previous example vanishes. By Whitehead’s
first lemma, we have H1

CE(g, V ) = 0, so in order to prove that the cohomology
(3.20) vanishes, we need to show that for any nonzero module map γ : g∗ → V ,
there exists v ∈ V , such that the expression (3.21) is not skew-symmetric. For
this we have to distinguish two cases:

- W ̸= g∗: In this case, by Schur’s lemma, any module map γ : g∗ → V is
a multiple of the inclusion. Then for any v ∈ W which is not invariant
under the g-action, the expression (3.21) is not skew-symmetric.

- W = g∗: By Schur’s lemma, the only module maps are multiples of the
inclusions ιi : g∗ → V for i = 1, 2. Let λ, µ ∈ R. Then for γ = λι1 + µι2,
v = (ϕ, ψ) ∈ g∗ ⊕ g∗ such that λϕ + µψ ̸= 0. Then (3.21) is not skew-
symmetric.

Example 3.5.40. When W = 0 as in example 3.5.39, the fixed point is not
stable: let ϵ > 0, then modifying the anchor by adding the constant extension
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of ϵid : g∗ → g∗ yields an affine action of g ⋉ g∗ on g∗ such that the isotropy
Lie algebras at a point ϕ ∈ g∗ are Lagrangian. By [LBM09] there is a transitive
Courant algebroid structure on the trivial g ⊕ g∗-bundle over g∗, which in
particular means that it has no fixed points. Consequently, by Theorem 3.5.36,
the cohomology is nonzero: Indeed, γ := id : g∗ → g∗ is a nontrivial cocycle.

3.5.3 Fixed points of Dirac structures in a split Courant
algebroid

In this section we look at fixed points of Dirac structures in split Courant
algebroids. For an introduction to Dirac geometry we refer to [Bur11].
We assume that we are in the following setting: let ((L, dL), (L∗, dL∗)) be a
Lie bialgebroid over M . In this case, L⊕ L∗ can be given a Courant algebroid
structure, such that L,L∗ are Dirac structures. Assume that p ∈ M is a fixed
point of dL, that is, if ρL : L → TM denotes the anchor of L, we have (ρL)p = 0.
When is it the case that for any Dirac structure near L, there exists a fixed
point q ∈ M near p? Of course, Theorems 3.2.8 and 3.5.6 could be used for
this, as any Dirac structure is in particular a Lie algebroid structure compatible
with the Lie algebroid structure dL∗ on L∗. Nevertheless, we try to apply the
main theorem to this setting: we observe that there is a differential graded
Lie algebra gDir such that its Maurer-Cartan elements are precisely Dirac
structures near L, and a differential graded Lie subalgebra gDir(p, 1) such that
its Maurer-Cartan elements are the Dirac structures near L with a fixed point
at p. The conclusion of the main theorem will be of a different form this time:
first, the differential in gDir need not be inner, i.e. of the form [π,−] for some
π ∈ Γ(S2(L∗[−1])). Therefore, we cannot get away with using a graded Lie
algebra, which implies that the gauge equation is inhomogeneous. Further, the
notion of gauge equivalence does not simply move the fixed point around on
the entire manifold M : it only allows to move the fixed point along the leaf of
(L∗, dL∗) through p.

3.5.3.1 Dirac structures

We first define Dirac structures in a Courant algebroid (E,Θ, ⟨−,−⟩) where
the pairing has split signature, note that this implies that rkE = 2n for some
n ≥ 0.

Definition 3.5.41. A Lagrangian subbundle L ⊆ E is a rank n subbundle of
E such that

⟨L,L⟩ ≡ 0.
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A Lagrangian subbundle L ⊆ E is a Dirac structure if

[[Γ(L),Γ(L)]] ⊆ Γ(L).

In this case the Courant algebroid structure Θ of E restricts to a Lie algebroid
structure on L.

Let (E,Θ, ⟨−,−⟩) be a Courant algebroid, and let L be a Lagrangian subbundle.
Assume that there is a Lagrangian subbundle R ⊆ E such that L ⊕ R = E.
Then the pairing

⟨−,−⟩ : L⊗R → R

is necessarily non-degenerate, identifying R ∼= L∗. Moreover, under this
identification,

⟨−,−⟩ : E ⊗ E → R

becomes the standard symmetric pairing on L⊕ L∗ given by

⟨(x, α), (y, β)⟩ = α(y) + β(x).

It can be shown that such a Lagrangian complement always exists.
Now assume that L is Dirac, and that R ∼= L∗ is also Dirac. The induced
Lie algebroid structures dL and dL∗ on L and L∗ respectively now form a Lie
bialgebroid ((L, dL), (L∗, dL∗)). Moreover, the Courant bracket of E can be
recovered from the Lie algebroid structures of L and L∗, see [LWX97].

Remark 3.5.42. The existence of a Dirac complement to L in E is non-trivial:
it can be shown that in TMH (see [LBM09, Example 1.2b]), the generalized
tangent bundle of M twisted by a closed 3-form H, T ∗M has a Dirac complement
precisely when H is exact: as any Lagrangian complement is necessarily the
graph of a 2-form ω, it can be shown that the graph is closed under the Courant
bracket if and only if H = dω.
Here, we only discuss the case for when such a Dirac complement exists. The
reason for that is that in the general case, the deformations are not governed by
a differential graded Lie algebra, but by an L∞-algebra with a ternary bracket
measuring the failure of a Lagrangian complement to be Dirac. In view of
remark 3.3.21viii), we will address this in future work.

3.5.3.2 The ingredients

We check that we are in the setting of assumptions 3.3.17.

i) We first identify the algebraic framework behind Dirac structures. As
before, we consider the Lie bialgebroid ((L, dL), (L∗, dL∗)), with the
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induced Courant algebroid structure on E = L⊕L∗. Note that L ⊆ L⊕L∗

is a Dirac structure, which is transverse to L∗. Dirac structures close to
L will still be transverse to L∗, hence they can be written as the graph of
a bundle map A : L → L∗.
Now because the pairing restricted to the subbundle gr(A) := {(l, A(l)) ∈
L ⊕ L∗ | l ∈ L} needs to be identically zero, it follows that A is skew-
symmetric: it can be interpreted as an element A ∈ Γ(S2(L∗[−1])) ⊆
Γ(L∗[−1] ⊗ L∗[−1]). The condition that L is Dirac can be written as a
Maurer-Cartan equation:
Lemma 3.5.43. [LWX97] Let A ∈ Γ(S2(L∗[−1])). Then the graph of
A# : L → L∗ is Dirac if and only if

dL(A) + 1
2 [A,A]L∗ = 0.

This is the Maurer-Cartan equation in the differential graded Lie algebra

(Γ(S(L∗[−1]))[1], dL, [−,−]L∗).

Here we use that ((L, dL), (L∗, dL∗)) is a Lie bialgebroid.
Definition 3.5.44. Let ((L, dL), (L∗, dL∗)) be a Lie bialgebroid. We
define

gDir := Γ(S(L∗[−1]))[1],
with differential dL, and bracket [−,−]L∗ .

ii) We now identify the graded Lie subalgebra gDir(p, 1) ⊆ gDir such that
the graph of a Maurer-Cartan element π ∈ gDir(p, 1) is a Dirac structure
for which p ∈ M is a fixed point.
Assume that p is a fixed point of dL and let A ∈ Γ(S2(L∗[−1])). As the
anchor of the graph of A# is given by

ρL + ρL∗ ◦A# : L → TM,

where we identify gr(A#) ∼= L, we see that

p ∈ M is a fixed point for gr(A#) ⇐⇒ im(A#
p ) ⊆ ker((ρL∗)p)

⇐⇒ Ap ∈ S2(ker((ρL∗)p)[−1]) ⊆ S2(L∗
p[−1]).

This hints at how to pick out subspaces of gDir:
Lemma 3.5.45. Let i ≥ 0 be an integer. Set

gi
Dir(p, 1) := {Λ ∈ Γ(Si+1(L∗[−1])) | Λp ∈ Si+1(ker((ρL∗)p)[−1]) ⊆ Si+1(L∗

p[−1])}.

Then gDir(p, 1) is closed under the Lie bracket [−,−]L∗ and differential
dL.
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Proof. Note that because both [−,−]L∗ and dL are derivations of the
wedge product, it is sufficient to show that for X,Y ∈ g0

Dir(p, 1),

[X,Y ]L∗ ∈ g0
Dir(p, 1)

and
dL(X) ∈ g1

Dir(p, 1).

The first is easy to show:

ρL∗([X,Y ]L∗)(p) = [ρL∗(X), ρL∗(Y )](p) = 0,

as the Lie bracket of two vector fields vanishing at p vanishes at p. Next,
in order to prove the second requirement on X, we note that for Λ ∈
Γ(S2(L∗[−1])), we have

Λ ∈ g1
Dir(p, 1) ⇐⇒ [Λ, C∞(M)]L∗ ⊆ IpΓ(L∗).

Now for f ∈ C∞(M)

[dL(X), f ] = dL(ρL∗(X)(f)) − [X, dL(f)]L∗ ,

as ((L, dL), (L∗, dL∗)) form a Lie bialgebroid. The first term lies in IpΓ(L∗)
because p is a fixed point of dL, while the second term lies in IpΓ(L∗)
because additionally X ∈ g0

Dir(p, 1).

Now the quotients gDir/gDir(p, 1) are finite-dimensional vector spaces:

Lemma 3.5.46.

gi
Dir/g

i
Dir(p, 1) ∼= Si+1(L∗

p[−1])/Si+1(ker((ρL∗)p)[−1]).

Proof. The map

Γ(Si+1(L∗[−1])) → Si+1(L∗
p[−1])/Si+1(ker((ρL∗)p[−1]))

given by evaluating a section at p, and taking the equivalence class mod
Si+1(ker((ρL∗)p)[−1]) is surjective with kernel precisely gi+1

Dir(p, 1).

iii) By restricting to a small neighborhood of p ∈ M , we may again assume
that we have splittings σi : gi

Dir/g
i
Dir(p, 1) → gi

Dir.

iv) As 0 ∈ Γ(S2(L∗[−1])) represents the Dirac structure L, we want to look
for Maurer-Cartan elements near 0.

We check that the data satisfies assumptions 3.3.17a)-e).
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a) We pick the following topologies on gDir:

- We pick the C∞-topology on g0
Dir,

- We pick the C1-topology on g1
Dir,

- We pick the C0-topology on g2
Dir.

b) As the value of dL(a) depends linearly on the 1-jet of a ∈ Γ(S2(L∗[−1])),
dL is continuous.

c) As the value of [a, b]L∗ depends bilinearly on the 1-jets of a, b ∈
Γ(S2(L∗[−1])), it is continuous.

d) An important difference from all the cases considered so far is the gauge
action, which we would like to understand in order to interpret the main
theorem. In this example, as dL is not necessarily an inner derivation of
the Lie bracket, we have to solve an inhomogenous initial value problem.
We first give a general formula for the solution to the gauge equation and
then interpret it in this case.
Let X ∈ Γ(L∗), π ∈ Γ(S2(L∗[−1])). Recall the initial value problem we
are interested in:

d

dt
πt = [X,πt] − dLX,π0 = π (3.22)

We give the solution in the following lemma, of which the proof is a
computation (see Appendix 3.6.2 for the notation):

Proposition 3.5.47. Let D = [X,−]L∗ : Γ(L∗) → Γ(L∗) be the covariant
differential operator with symbol ρL∗(X), and denote by Φ̃D

t its flow until
time t (if it exists), as well as its extension to the shifted symmetric powers
of L∗. Then

πt := Φ̃D
−t(π) −

∫ t

0
Φ̃D

−s(dLX)ds (3.23)

satisfies equation (3.22).

Now we are interested in how the anchor of gr(πt) changes with t. In
particular, if π1 exists, how the anchor of gr(π1) compares to the anchor
of gr(π0). We give the answer here, but postpone the proof until the
appendix.
Let (Φ̃D

t )∗ : Γ(L) → Γ(L) be the dual automorphism. Then:

Lemma 3.5.48.

ρgr(πt) = (ϕX
−t)∗ ◦ ρgr(π0) ◦ (Φ̃D

−t)∗,

where (ϕX
−t)∗ is the pushforward by the time −t-flow of ρL∗(X).
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As g0
Dir/g

0
Dir(p, 1) = L∗

p/ ker((ρL∗)p) ∼= TpS, where S is the leaf of L∗

going through p ∈ M , and by the Lie algebroid splitting Theorem [Loj02,
Theorem 1.1], we see that we can pick splittings such that the gauge
action exists for all elements in the image of σ0. In particular, Lemma
3.5.48 implies that

πσ0(v) ∈ g1
Dir(p, 1) ⇐⇒ ϕ

σ0(v)
1 (p) is a fixed point of gr(π0),

and a neighborhood of 0 ∈ g0
Dir/g

0
Dir(p, 1) corresponds to a neighborhood

of p ∈ S, using the gauge action.

Remark 3.5.49. Due to Marco Zambon, there is a more geometric
argument to interpret the gauge action. When X ∈ Γ(L∗), this induces
an element of Γ(L ⊕ L∗), which has a Courant bracket [[−,−]]. X then
induces a covariant differential operator [[X,−]] with symbol ρL∗(X). The
time-1 flow of this operator transforms the graph of π0 into the graph of
π1.

e) Lemma 3.3.19 implies that the gauge action preserves Maurer-Cartan
elements.

3.5.3.3 Applying the main theorem

Applying the main theorem to gDir and gDir(p, 1) now yields:

Theorem 3.5.50. Let p ∈ M be a fixed point of the Dirac structure L inside
the Courant algebroid L⊕ L∗, that is, (ρL)p = 0. Assume that

H1(gDir/gDir(p, 1), dL) = 0.

Then for every open neighborhood U of p ∈ S in S, where S is the (L∗, dL∗)-leaf
through p, there exists a C1-neighborhood U of 0 ∈ g1

Dir such that for any Dirac
structure π ∈ U there is a family I in U of fixed points of the Dirac structure
gr(π) parametrized by an open neighborhood of

0 ∈ H0(gDir/gDir(p, 1), dL).

3.5.3.4 Examples

Example 3.5.51 (Poisson structures). The first example we apply this to is
the one of Poisson structures: for M a smooth manifold, TM = TM ⊕ T ∗M
has a Courant algebroid structure, which is just the construction of Section
3.5.1 applied to the standard Lie algebroid structure on TM , and the zero
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Lie algebroid structure on T ∗M . Now let π ∈ Γ(S2(TM [−1])) be a Poisson
structure, that is,

[π, π] = 0.

Then the graph of π# is a Dirac structure, whose fixed points are exactly
the zeroes of π. Now let L = T ∗M , and consider the Dirac structure given
by the graph of π. Assume that p ∈ M is a fixed point of gr(π). Then
dL : Γ(S•(TM [−1])) → Γ(S•+1(TM [−1])) is given by dL = [π,−]. Now
gDir = X•(M), and gDir(p, 1) = IpX

•(M). Hence the relevant complex is given
by

TpM S2(TpM [−1]) S3(TpM [−1])[π,−] [π,−]

as in Lemma 3.5.46.
This is precisely the complex appearing in [CF10] for zero-dimensional leaves
and [DW06] for k = 1.
Finally, the conclusion of the theorems is the same as well. We see that Theorem
3.5.50 recovers the above-mentioned results.

Example 3.5.52 (b-Poisson structures). We now look at a slight variation of
this. Let M be a smooth manifold and Z ⊆ M a smooth connected hypersurface.
We then consider the Lie algebroid ♭TM , with its standard Lie algebroid
structure given by the inclusion Γ(♭TM) ⊆ X(M). Now let π ∈ Γ(∧2♭TM) be
a self-commuting element. This is a Poisson structure for which Z is a Poisson
hypersurface, and the graph of π# : ♭T ∗M → ♭TM is a Dirac structure inside
♭TM ⊕ ♭T ∗M . Now assume that p ∈ M is a fixed point of this Dirac structure.
One can show that this is is equivalent to πp = 0 ∈ ∧2♭TpM . We apply Theorem
3.5.50 to this example. Note that ♭TM has two kinds of leaves: there is the
hypersurface Z, and the connected components of M \ Z. As the latter leaves
are open and the stability problem is local, p ∈ M \ Z puts us in the ordinary
Poisson case. We therefore consider p ∈ Z. In this case gDir = Γ(S(♭TM [−1])),
and as ker((ρ♭T M )p) is one-dimensional, we find that the relevant complex is
given by

TpZ S2(♭TpM [−1]) S3(♭TpM [−1])[π,−] [π,−] (3.24)

as in Lemma 3.5.46.
The conclusion of the theorem tells us now that if the middle cohomology
vanishes, we find that for every Poisson structure near π such that Z is a
hypersurface, there is a family of zeroes near p inside Z. A natural question is
how this compares to the question of fixed points of Poisson structures on Z,
starting with the Poisson structure π|Z . In this case the relevant complex is
given by

TpZ S2(TpZ[−1]) S3(TpZ[−1]).
[ π|Z ,−] [ π|Z ,−]

(3.25)
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There is a surjective chain map from (3.24) to (3.25) which induces a surjection
on the middle cohomology. This reflects the fact that any Poisson structure
on Z is (locally around p ∈ M) the restriction of a Poisson structure on M for
which Z is a Poisson hypersurface.

3.6 Appendix

3.6.1 Auxiliary lemmas

The following lemmas are a small variation of Proposition 4.4 of [CSS14], and
are used in the proof of the main theorem of [DW06], as well as Theorem 3.3.20.

Lemma 3.6.1. Let V,W be finite-dimensional real vector spaces and B ⊆ W
a linear subspace of codimension r. Assume that f : V → W is a smooth map
such that f(0) = 0, and that (Df)0(V ) +B = W . Then for every neighborhood
U of 0 ∈ V , there exists a C0-neighborhood U of f in C∞(V,W ) such that for
every g ∈ U there exists q ∈ U with the property g(q) ∈ B.
Moreover, there exists a C1-neighborhood U ′ of f such that g ∈ U ′ in addition
also satisfies that (Dg)q +B = W .
Finally, in the latter case, the set g−1(B) is a smooth submanifold near q ∈ V
of dimension dimR(ker(Df)0).

Proof. Let A ⊆ W be a complement to B, and decompose f : V → A⊕ B as
(fA, fB). For the first statement, it suffices to show that for every neighborhood
U of 0 ∈ V , there is a C0-neighborhood U of fA in C∞(V,A) such that for
every g ∈ U , there exists q ∈ U such that g(q) = 0 ∈ A.
Observe that since fA : V → A is a submersion at 0 ∈ V , up to diffeomorphism
we may assume that V = A × P , U = U1 × U2 and that fA is the projection
onto A. Picking a basis for A, let ϵ > 0 be small enough such that [−ϵ, ϵ]r ⊆ U1.
Let

U =
{
g ∈ C∞(V,A) | ∥fA − g∥[−ϵ,ϵ]r×{0P },0 <

ϵ

2

}
be the ϵ

2 -ball around fA with respect to the C0-seminorm associated to the
compact set K = [−ϵ, ϵ]r × {0P }. Now if g ∈ U , then

g|A×{0P } : Rr × {0P } → Rr, (x1, . . . , xr) 7→ (g1(x1, . . . , xr), . . . , gr(x1, . . . , xr))

satisfies

gi(x1, . . . , xi−1,−ϵ, xi+1, . . . xr) < ϵ

2+fi(x1, . . . , xi−1,−ϵ, xi+1, . . . xr) = − ϵ

2 < 0,
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gi(x1, . . . , xi−1, ϵ, xi+1, . . . xr) > − ϵ

2 + fi(x1, . . . , xi−1, ϵ, xi+1, . . . xr) = ϵ

2 > 0.

By the Poincaré-Miranda theorem, there exists a point q ∈ Rr ∼= A such that
g(q, 0P ) = 0.
For the second statement, once we know the existence of q, the derivative of fA

at q is surjective (it is still the projection). As this is an open condition and K
is compact, the result follows.
The final statement follows from the preimage theorem, as g intersects B
transversely in q ∈ V .

Remark 3.6.2.

- Note that we can replace B by an open subset of B, by restricting the
obtained neighborhood to only those maps which take values in the open
subset.

- By using the implicit function theorem instead of the preimage theorem,
ker(Df)0 can be used as a local chart for g−1(B).

Lemma 3.6.3 (Lemma A on p. 61 of [GG80]). Let f : X → Y be a smooth
immersion at a point p ∈ X. Then there is an open neighborhood U of p ∈ X,
and a C1-neighborhood U of f such that every g ∈ U is an injective immersion
on U .

3.6.2 Calculus on vector bundles

Given any vector bundle A over a smooth manifold M , there is a transitive Lie
algebroid associated to it. This can be found more generally in the appendix of
[CF03]. The sections of this Lie algebroid are given by the space of covariant
differential operators:

Definition 3.6.4. Let A be a vector bundle. A covariant differential operator
on A is an R-linear map

D : Γ(A) → Γ(A)
such that there exists a vector field σ(D) ∈ X(M) depending C∞(M)-linearly
on D, satisfying

D(fs) − fD(s) = σ(D)(f)s
for all f ∈ C∞(M), s ∈ Γ(A). The vector field σ(D) is called the symbol of D.
We denote the space of covariant differential operators on A by CDO(A).

We summarize some properties of CDO(A).

Lemma 3.6.5. Let A be a vector bundle over a smooth manifold M .
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i) For D ∈ CDO(A), there is a unique D∗ ∈ CDO(A∗) with symbol σ(D)
such that

σ(D)(⟨α, s⟩) = ⟨D∗(α), s⟩ + ⟨α,D(s)⟩
for α ∈ Γ(A∗), s ∈ Γ(A). Consequently, as A∗∗ ∼= A, CDO(A) ∼=
CDO(A∗). Here ⟨−,−⟩ denotes the dual pairing between A and A∗.

ii) For D ∈ CDO(A), k ≥ 0 there is a unique D⊗k ∈ CDO(A⊗k) with
symbol σ(D) such that

D(a1 ⊗ · · · ⊗ ak) =
k∑

i=1
a1 ⊗ · · · ⊗D(ai) ⊗ · · · ⊗ ak

for a1, . . . , ak ∈ Γ(A). Moreover, the extension D⊗k descends to all
symmetric and exterior powers of A.

A covariant differential operator on a vector bundle A over M can be integrated
to a vector bundle automorphism of A. One way to view this is by noting
that any D ∈ CDO(A) with symbol X induces a vector field D̃ on A which
preserves the fiberwise constant and fiberwise linear functions, in particular D̃
can be restricted to the zero section M ⊆ A, and the induced vector field is X.
The flow ΦD̃

t is defined for all t ∈ R for which the flow ϕX
t of X exists. The

covariant differential operator can be recovered from the flow by the equation

D(s) = d

dt

∣∣∣∣
t=0

ΦD̃
−t ◦ s ◦ ϕX

t

for s ∈ Γ(A).
Assume that X is complete. Then for every t ∈ R, we get an automorphism
Φ̃D

−t of Γ(A) defined by

Φ̃D
−t(s) = ΦD̃

−t ◦ s ◦ ϕX
t .

This automorphism behaves well with respect to actions described in Lemma
3.6.5:

Lemma 3.6.6. Let A be a vector bundle over a smooth manifold M , and let
t ∈ R.

i) For D ∈ CDO(A), there is a dual automorphism

(Φ̃D
t )∗ : Γ(A∗) → Γ(A∗),

determined by the equation

⟨(Φ̃D
t )∗(α), Φ̃D

−t(s)⟩ = ⟨α, s⟩ ◦ ϕX
t
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for α ∈ Γ(A∗), s ∈ Γ(A), and ⟨−,−⟩ denotes the dual pairing between A
and A∗. Moreover, the dual automorphism agrees with the integration of
the dual covariant differential operator D∗:

(Φ̃D
t )∗ = Φ̃D∗

−t

ii) For D ∈ CDO(A), k ≥ 0, there is an induced automorphism

(Φ̃D
−t)⊗k : Γ(A⊗k) → Γ(A⊗k)

determined by the equation

(Φ̃D
−t)⊗k(a1 ⊗ · · · ⊗ ak) = Φ̃D

−t(a1) ⊗ · · · ⊗ Φ̃D
−t(ak)

for a1, . . . , ak ∈ Γ(A). Moreover,

(Φ̃D
−t)⊗k = (Φ̃D⊗k

−t ).

Moreover, (Φ̃D
−t)⊗k descends to all symmetric and exterior powers of A.

Since there is no ambiguity, we will not distinguish between D and its extensions
to the exterior, symmetric and tensor powers of A.

3.6.3 Omitted proofs

In this section we prove two statements whose proofs were omitted in the main
text. We start with a proof of Lemma 3.4.41, which is about pulling back
certain geometric resolutions.

Proof of Lemma 3.4.41. For the first statement, we construct the resolution
as follows: pick linear generators X1, . . . , Xr of F(V ), and let Fpol :=
⟨X1, . . . , Xr⟩S(V ∗), the S(V ∗)-submodule of F(V ) consisting of polynomial
linear combinations of the generators. This is a finitely generated module over
the ring of polynomials, so by the Hilbert Syzygy theorem, there exist free
modules Fi = S(V ∗) ⊗R Ei, where Ei is a finite-dimensional vector space, and
module maps di : Fi → Fi−1 such that

0 Fn Fn−1 . . . F1 Fpol 0dn dn−1 d2 ρ (3.26)

is exact. Extending this sequence above as sheaf morphisms, we obtain a
complex of C∞

V -modules. As a sequence of sheaves is exact precisely when the
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sequence is exact on every stalk, we need to show that this implies that for
every q ∈ V , the sequence

0 Γq(En) Γq(En−1) . . . Γq(E1) Fq 0dn dn−1 d2 ρ

is exact, where Γq(E) is the stalk of the sheaf of sections of E at q. Note that

Γq(Ei) = C∞
V,q ⊗S(V ∗) Fi = C∞

V,q ⊗Cω
V,q

Cω
V,q ⊗S(V ∗) Fi,

where Cω
V is the sheaf of analytic functions on V , and Cω

V,q is an S(V ∗)-module
by means of the inclusion of polynomials as analytic functions. As

Fq = C∞
V,q ⊗S(V ∗) Fpol,

it suffices to show that C∞
V,q is flat over S(V ∗). We do this in two steps: we

show that germs of analytic functions in a point q are flat over polynomials, and
that the germs of smooth functions in a point q are flat over germs of analytic
functions in q.
The second step is just [Mal66, Corollary VI.1.12]. For the first step, note that
we have a commutative triangle,

S(V ∗) Ŝ(V ∗)

Cω
V,q

Tq

Tq

where Ŝ(V ∗) is the algebra of formal power series on V , Tq takes the Taylor
expansion around q, and the vertical map is the inclusion. Now we note that
Tq is actually the Iq-adic completion map with respect to the vanishing ideal of
q ∈ V , which for Cω

V,q is faithfully flat by [Sta21a]. As the ring of polynomials
is not local, we cannot apply this argument to the horizontal map. However,
we can use [Sta21b] to conclude that the horizontal map is flat. It then follows
from the definition of (faithful) flatness that the vertical map is also flat.
For the second statement, we first find a resolution for C∞

V ×U ⊗C∞
V

F . By the
assumption that FU is an isomodule deformation, this gives a resolution of FU .
The straightforward thing to do here would be to take the resolution we found
earlier, and pull it back to V × U . As far as we know, it is not clear whether
this preserves exactness. We therefore take a different way. Consider again the
resolution (3.26). If we apply the functor S(V ∗ ⊕ Rn) ⊗S(V ∗) −, the sequence
stays exact. If we now apply the same argument as before, we obtain a
geometric resolution of C∞

V ×U ⊗C∞
V

F as in the formulation of the lemma. As
the differentials are unchanged, the first two properties are automatic. Finally,
the fact that the Lie n-algebroid restricts is a consequence of the fact that FU

is tangent to V × {0}. Now the existence of the Lie n-algebroid structure is
guaranteed by [LGLS20, Theorem 2.7].
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We now prove Lemma 3.5.48 about the anchor of a gauge transformed Dirac
structure.

Proof of Lemma 3.5.48. The non-trivial part of the proof is evaluating the
integral of equation (3.23). For that we give the antiderivative of ρL∗ ◦
Φ̃D

−s(dLX)#:

Claim.
d

ds
(ϕρL∗ (X)

−s )∗ ◦ ρL ◦ (Φ̃D
−s)∗ = −ρL∗ ◦ Φ̃D

−s(dLX)#.

Proof of claim. It suffices to prove that the claim holds when evaluating both
sides on a section a ∈ Γ(L).

d

ds
(ϕρL∗ (X)

−s )∗ ◦ ρL ◦ (Φ̃D
−s)∗(a) =[ρL∗(X), (ϕρL∗ (X)

−s )∗ ◦ ρL ◦ (Φ̃D
−s)∗(a)]

− (ϕρL∗ (X)
−s )∗ ◦ ρL ◦ LX((Φ̃D

−s)∗(a))

=(ϕρL∗ (X)
−s )∗[ρL∗(X), ρL((Φ̃D

−s)∗(a))]

− (ϕρL∗ (X)
−s )∗(ρL(LX((Φ̃D

−s)∗(a))))

△=(ϕρL∗ (X)
−s )∗(ρL(LX(Φ̃D

−s)∗(a)))

− (ϕρL∗ (X)
−s )∗(ρL∗(L(Φ̃D

−s
)∗(a)(X)))

+ (ϕρL∗ (X)
−s )∗(ρL∗(dL(ι(Φ̃D

−s
)∗(a)(X)))

− (ϕρL∗ (X)
−s )∗(ρL(LX((Φ̃D

−s)∗(a))))

= − (ϕρL∗ (X)
−s )∗(ρL∗(ι(Φ̃D

−s
)∗(a)(dLX)))

⋆= − ρL∗(Φ̃D
−s(ι(Φ̃D

−s
)∗(a)(dLX)))

= − ρL∗(Φ̃D
−s(dLX)#(a)).

Here LX = dL∗ιX + ιXdL∗ , and an analogous formula holds for L(Φ̃D
−s

)∗(a).
Further, at △, we apply [LWX97, Lemma 4.3], and at ⋆ we apply the equality

ρL∗ ◦ Φ̃D
−s = (ϕρL∗ (X)

−s )∗ ◦ ρL∗ ,
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which holds as both sides of the equation satisfy the ODE

d

ds
γs(Y ) = [ρL∗(X), γs(Y )]

for all Y ∈ Γ(L∗), with γ0 = ρL∗ .

To finish the proof, recall from 3.5.47 that

π1 = Φ̃D
−1(π0) −

∫ 1

0
Φ̃D

−s(dLX)ds. (3.27)

Then

ρgr(π1) = ρL + ρL∗ ◦ π#
1

⋆= ρL + ρL∗ ◦ Φ̃D
−1(π0)# + (ϕρL∗ (X)

−1 )∗ ◦ ρL ◦ (Φ̃D
−1)∗ − ρL

= ρL∗ ◦ Φ̃D
−1 ◦ π#

0 ◦ (Φ̃D
−1)∗ + (ϕρL∗ (X)

−1 )∗ ◦ ρL ◦ (Φ̃D
−1)∗

= (ϕρL∗ (X)
−1 )∗ ◦ (ρL∗ ◦ π#

0 + ρL) ◦ (Φ̃D
−1)∗

= (ϕρL∗ (X)
−1 )∗ ◦ ρgr(π0) ◦ (Φ̃D

−1)∗,

where ⋆ uses the claim and (3.27).
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Chapter 4

Stability of fixed points of
Dirac structures

This chapter contains the article [SZ23].

Abstract - Given an L∞-algebra V and an L∞-subalgebra W , we give sufficient
conditions for all small Maurer-Cartan elements of V to be equivalent to Maurer-
Cartan elements lying in W . As an application, we obtain a stability criterion
for fixed points of a Dirac structure (for instance a twisted Poisson structure),
i.e. points where the corresponding leaf is zero-dimensional. The criterion
guarantees that any nearby Dirac structure also has a fixed point.

4.1 Introduction

Stability questions appear naturally in mathematics. For instance, given a
vector field X vanishing at a point p, one can ask about the stability of p: does
every vector field sufficently close to X have a zero nearby p? Given a Lie
algebra structure on a fixed vector space and a Lie subalgebra h, one can ask
about the stability of h: does every sufficently close Lie algebra structure admit
a Lie subalgebra nearby h?

The main contribution of this paper is two-fold. First we state an algebraic
theorem about L∞[1]-algebras. This theorem can be applied to a variety of
stability questions. In the second part of the paper we apply it to a specific
geometric problem, obtaining a stability criterion for fixed points of Dirac
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structures. This includes twisted Poisson structures as a special case, and
extends some results obtained in [CF10][DW06][Sin22].

Recall that L∞[1]-algebras are a notion equivalent to the L∞-algebras introduced
by Lada and Stasheff in the 1990’s [LS93], in order to provide a “up to homotopy”
version of Lie algebras. They contain special elements – called Maurer-Cartan
elements – which come equipped with an equivalence relation. Deformation
problems are typically governed by such algebraic structures, in the sense that
(equivalence classes of) deformations are parametrized by (equivalence classes
of) Maurer-Cartan elements of the L∞[1]-algebra.

We paraphrase our main algebraic results as follows, omitting technical
assumptions, and refer to Theorem 4.3.1 for the full statement:

Theorem. Let V be an L∞[1]-algebra, whose underlying cochain complex we
denote by by (V, d). Let W be an L∞[1]-subalgebra of finite codimension, and
fix a Maurer-Cartan element Q of W . Denote by dQ is the differential on V
obtained twisting d by Q, and view dQ as a differential on the quotient V/W . If

H0(V/W, dQ) = 0,

then, under some technical conditions, any Maurer-Cartan element of V
sufficently close to Q is equivalent to a Maurer-Cartan element lying in W .

This result extends a previous one on differential graded Lie algebras by the
first author [Sin22, Theorem 3.20] (see also the works of Dufour-Wade [DW06]
and Crainic-Fernandes [CF05][CF10]).

As an application of the above algebraic theorem, we consider Dirac structures
[Cou90], geometric structures which include Poisson bivector fields and closed
2-forms, and which can be used to characterize Hitchin’s generalized complex
structures [Hit03]. Dirac structures are defined as Lagrangian and involutive
subbundles of Courant algebroids [LWX97]. Important examples of the latter are
TM ⊕ T ∗M , endowed with a bracket that depends on a choice of closed 3-form
H on the manifold M . In that case, one speaks of H-twisted Dirac structures
[ŠW01] (this includes H-twisted Poisson structures). They first appeared in the
context of σ-models in physics, in the work of Klimčik-Strobl [KS02] and Park
[Par], and in that context H is called the Wess-Zumino-Witten 3-form.

A byproduct of this note is a geometric characterization of the equivalences of
Dirac structures induced by the L∞[1]-algebra governing deformations of Dirac
structures: they are given by applying inner automorphisms of the ambient
Courant algebroid, see Proposition 4.5.2.
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Applying the above algebraic theorem, and upon making explicit the assumptions
and conclusions, one obtains Theorem 4.6.7. This is a statement on the stability
of fixed points (i.e. zero-dimensional leaves) of Dirac structures . We state a
simplified version as follows:

Theorem. Let E → M be a Courant algebroid whose pairing has split signature,
denote by ρ : E → TM its anchor map. Let A ⊆ E be a Dirac structure which
has a fixed point at p ∈ M , i.e. ρ(Ap) = 0. Denote by g the Lie algebra Ap,
and consider the Lie ideal h := (ker(ρ|Ep

))⊥. Assume that

H2
(

∧•g∗

∧•h◦ , dg

)
= 0.

Then any Dirac structure sufficiently close to A admits a fixed point nearby p,
and lying in the leaf of E through p.

This theorem clarifies and improves [Sin22, Theorem 5.50], since it holds in
wider generality and without making any auxiliary choice.

We conclude this note presenting some examples of the above theorem in §4.7.
For instance, on a Lie group G with a bi-invariant metric we consider the
Cartan-Dirac structure, which is twisted by the Cartan-Dirac 3-form H. The
identity e ∈ G is a fixed point of the Cartan-Dirac structure. If the second
Lie algebra cohomology vanishes, then any sufficently close H-twisted Dirac
structure also has a fixed point nearby e.
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FNRS under EOS projects G0H4518N and G0I2222N, and by FWO project
G0B3523N (Belgium). M.Z. acknowledges partial support by the long term
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4.2 Background on L∞[1]-algebras

In this section we recall basic notions about L∞[1]-algebras. The latter are
central objects in deformation theory, and are completely equivalent to L∞-
algebras [LS93], which have ordinary Lie algebras and differential graded Lie
algebras as special cases. All vector spaces are assumed to be over K = R or
K = C.

Definition 4.2.1. An L∞[1]-algebra is a pair (V, {µk}k≥1), where

i) V =
⊕

i∈Z V
i is a Z-graded vector space,
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ii) for every k ≥ 1,
µk : Sk(V ) → V

is a multilinear degree 1 map called a multibracket,

satisfying for n ≥ 0, x0, . . . , xn ∈ V ,
n∑

i=0

∑
σ∈Sh(i+1,n−i−1)

ϵ(σ)µn−i+1(µi+1(xσ(0), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0.

(4.1)
Here Sk(V ) denotes the k-th graded symmetric power of V , and ϵ(σ) is the
Koszul sign, determined by

x1 . . . xn = ϵ(σ)xσ(1) . . . xσ(n)

in the graded symmetric algebra S(V ).

Remark 4.2.2. The equations (4.1) are higher analogues of the Jacobi identity
for Lie algebras.

i) For n = 0, it follows that
µ2

1 = 0,

turning (V, µ1) into a cochain complex.

ii) For n = 1, it follows that µ1 is a graded derivation of µ2.

iii) For n = 2, it follows that µ3 is a contracting homotopy of the Jacobiator
of µ2, with respect to the differential µ1.

Now let (V, {µk}1≤k≤n) be an L∞[1]-algebra with µk ≡ 0 for k > n (i.e., only
finitely many multibrackets are non-zero).

Definition 4.2.3. A degree 0 element Q ∈ V 0 is a Maurer-Cartan element if
n∑

i=1

1
i!µi(Q, . . . , Q) = 0. (4.2)

A motivation for this definition is the following. For any degree 0 element Q,
we can define new structure maps

µQ
k :=

∞∑
i=0

1
i!µk+i(Q, . . . , Q︸ ︷︷ ︸

i times

,−, . . . ,−), (4.3)
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where we note that the sum is finite. A natural question to ask is when these
maps define a new L∞[1]-algebra structure on V . It turns out that if Q is a
Maurer-Cartan element, then (V, {µQ

k }1≤k≤n) is an L∞[1]-algebra (see e.g. the
text following [Fukdf, Lemma 2.2.1], or [Dol, §2]).

Given a degree 0 element Q ∈ V 0 and a X ∈ V −1, we can construct a new
degree 0 element, denoted by QX , as follows. For the following definition, we
need V 0 to carry a topology.
Definition 4.2.4. Let (V, {µk}1≤k≤n) be an L∞[1]-algebra such that for every
i ∈ Z, V i carries a locally convex topology1. For Q ∈ V 0 and X ∈ V −1, assume
that the initial value problem

d

dt
Qt = µQt

1 (X), Q0 = Q (4.4)

has a unique solution for all t ∈ [0, 1] (notice that the right hand side was
defined in equation (4.3)). Then we define

QX := Q1 ∈ V 0,

the value of the solution at t = 1.
Remark 4.2.5. When solving equation (4.4) in terms of formal paths, or when
the L∞[1]-algebra is nilpotent, it can be shown that QX is a Maurer-Cartan
element if and only if Q is (see for instance [DP16, Corollary 1]). Since we are
dealing with differentiable paths, we will need to assume that the solution of
(4.4) takes value in the space of Maurer-Cartan elements.

Finally, we will need subspaces of L∞[1]-algebras which have an induced L∞[1]-
algebra structure.
Definition 4.2.6. Let (V, {µk}k≥1) be an L∞[1]-algebra, and let W ⊆ V be a
graded linear subspace. Then W is said to be a L∞[1]-subalgebra if

µk(Sk(W )) ⊆ W

for all k ≥ 1.

4.3 Main theorem for L∞[1]-algebras

In this subsection we present a general statement about L∞-algebras and their
Maurer-Cartan elements. It generalizes [Sin22, §3.3] from differential graded
Lie algebras to L∞-algebras.

1See [Rud91] for some background on locally convex vector spaces, and see [CP82] for
some background on function spaces.



MAIN THEOREM FOR L∞[1]-ALGEBRAS 177

Assume that we have the following data:

i) An L∞[1]-algebra (V, {µk}1≤k≤n) with finitely many non-trivial
multibrackets, such that for each i = −1, 0, 1, V i carries a locally
convex topology,

ii) a L∞[1]-subalgebra W of V such that, for i = −1, 0, 1, the subspace
W i is of finite codimension and closed in V i,

iii) linear splittings σi : V i/W i → V i for i = −1, 0,

iv) a Maurer-Cartan element Q ∈ W 0,

such that

a) the multibrackets µk : Sk(V 0) → V 1 are continuous, when viewed as
symmetric K-multilinear maps,

b) there is a convex open neighborhood U of 0 ∈ V −1/W−1 such that
for every X ∈ U the following holds: the element Qσ−1(X) as in
definition 4.2.4 is defined, the assignment

U × V 0 → V 0, (X,Q′) 7→ (Q′)σ−1(X)

is jointly continuous, and the mod W 0 class of (Q′)σ−1(X) depends
smoothly on X ∈ U for each fixed Q′,

c) for X ∈ U , an element Q′ ∈ V 0 is Maurer-Cartan if and only if
(Q′)σ−1(X) is Maurer-Cartan.

Recall that µQ
1 was defined in eq. (4.3); we denote by µQ

1 the induced differential
on V/W .
Theorem 4.3.1. Assume that we are in the setting described above. Assume
that

H0(V/W, µQ
1 ) = 0.

Then there exists an open neighborhood U ⊆ V 0 of Q such that for any Maurer-
Cartan element Q′ ∈ U , there exists a family I ⊆ U , smoothly parametrized by
an open neighborhood of

0 ∈ ker(µQ
1 : V −1/W−1 → V 0/W 0),

with the property that x ∈ I =⇒ (Q′)σ−1(x) ∈ W 0.
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In particular, Q′ is related (in the sense of Definition 4.2.4) to a Maurer-Cartan
element lying in W .

Remark 4.3.2. We provide a heuristic interpretation of the theorem. By
the conclusions of the theorem, the map of moduli spaces of Maurer-Cartan
elements induced by the inclusion

MC(W )/ ∼ −→ MC(V )/ ∼

is surjective nearby [Q]. The corresponding map of formal tangent spaces at
[Q] is

H0(W,µQ
1 ) −→ H0(V, µQ

1 ). (4.5)
By the hypotheses of the theorem, this linear map is surjective: indeed the
obvious short exact sequence of cochain complexes gives rise to a long exact
sequence in cohomology, a piece of which reads

· · · −→ H0(W,µQ
1 ) −→ H0(V, µQ

1 ) → H0(V/W, µQ
1 ) −→ . . .

While the moduli spaces of Maurer-Cartan elements are not smooth manifolds,
and hence the regular value theorem can not be applied, Theorem 4.3.1 shows
that the vanishing of H0(V/W, µQ

1 ) is sufficient to obtain the same conclusion.
It would be interesting to investigate under what conditions surjectivity of (4.5)
implies the conclusions of the theorem. This observation is analogous to the
one made at the end of [CSS14, Remark 5.13].

Before proving Theorem 4.3.1, we present the main idea of the proof. The
conclusion of the theorem suggests to consider, for every Q′ nearby Q, the map

evQ′ : V −1/W−1 → V 0/W 0, v 7→ (Q′)σ−1(v) +W 0.

If the map evQ was a submersion in a neighborhood of 0 ∈ V −1/W−1, the same
would hold for its perturbation evQ′ , implying that its image would contain
the origin, as desired. While evQ is almost never a submersion, it is transverse
to a certain subspace K ⊆ V 0/W 0, therefore evQ′ too; from this, using the
cohomological assumption and the Maurer-Cartan condition on Q′, we will be
able obtain the desired conclusion.

Proof. For simplicity, we take U = V −1/W−1, but the proof goes through for
any convex open neighborhood of the origin in V −1/W−1. In the first part of
the proof we assume the existence of certain maps between the spaces V i/W i

for i = −1, 0, 1 with prescribed properties, from which the result follows. In the
second part we explicitly construct the maps.

Assume the existence of the following maps:



MAIN THEOREM FOR L∞[1]-ALGEBRAS 179

1) A smooth map
evQ′ : V −1/W−1 → V 0/W 0

depending continuously on Q′ ∈ V 0,

2) a smooth map
Rv,Q′ : V 0/W 0 → V 1/W 1

depending continuously on (v,Q′) ∈ V −1/W−1 × V 0,

with the following properties:

A) evQ(0) = 0 ∈ V 0/W 0, and the derivative satisfies

(D(evQ))0 = µQ
1 : V −1/W−1 → V 0/W 0.

Moreover, the element (Q′)σ−1(v) lies in the subspace W 0 ⊆ V 0 if and
only if evQ′(v) = 0.

B) Rv,Q′(0) = 0 ∈ V 1/W 1 for every (v,Q′) ∈ V −1/W−1 × V 0, and the
derivative of R0,Q satisfies

(D(R0,Q))0 = µQ
1 : V 0/W 0 → V 1/W 1.

C) Whenever Q′ ∈ V 0 is Maurer-Cartan, for every v ∈ V −1/W−1 we have:

Rv,Q′(evQ′(v)) = 0.

The following diagram summarizes diagrammatically the above maps.

V −1/W−1 V 0/W 0 V 1/W 1evQ′ Rv,Q′
.

The conclusion of the theorem follows exactly as in [Sin22, Theorem 3.20]. We
summarize the main ideas for the reader’s convenience.

• Let K be a complement to ker(µQ
1 ) in V 0/W 0. Property B) implies that

R0,Q restricted to K is an immersion at 0 ∈ K. By continuity, for (v,Q′)
close enough to (0, Q), the same is true for Rv,Q′ . Therefore Rv,Q′ is
injective in a neighborhood O of 0 ∈ K. The neighborhood O can be
chosen independently of (v,Q′).

• Property A) and the cohomological assumption imply that evQ intersects
K transversely in 0. Therefore, for any Q′ close enough to Q, the map
evQ′ also intersects K transversely, and there exists a v ∈ V −1/W−1 close
to 0 such that evQ′(v) ∈ O.
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• When Q′ is Maurer-Cartan, using property C), the fact that Rv,Q′(0) = 0
by property B), and the injectivity in the first item above, it follows
that evQ′(v) = 0. By construction, this means that (Q′)σ−1(v) ∈ W 0,
as desired. More is true: as ev−1

Q′ ({0}) = ev−1
Q′ (O) is non-empty, the

transversality argument above implies that ev−1
Q′ ({0}) is a submanifold of

dimension equal to the one of ker(µQ
1 : V −1/W−1 → V 0/W 0).

We now define the maps evQ′ and Rv,Q′ used above.

1) Let Q′ ∈ V 0. Then for v ∈ V −1/W−1, we set

evQ′(v) = (Q′)σ−1(v) +W 0.

Then by condition a) of the data at the beginning of this section, the map
depends continuously on Q′ and smoothly on v ∈ V .

2) Let (v,Q′) ∈ V −1/W−1 × V 0. To shorten the notation we write X :=
(Q′)σ−1(v), and X := X +W 0. For Y ∈ V 0/W 0, we set

Rv,Q′(Y ) =
n∑

i=1

1
i!µi

(
(X − σ0(X)) + σ0(Y ), (4.6)

. . . , (X − σ0(X)) + σ0(Y )
)

+W 1.

(4.7)

Since the multibrackets µi are continuous, the map R depends
continuously on the parameters (v,Q′) ∈ V −1/W−1 × V 0.
Notice that, as the µi are symmetric when the arguments have degree 0,
we can use Newton’s binomial formula to rewrite (4.6) as

Rv,Q′(Y ) =
n∑

i=1

i∑
j=0

1
i!

(
i

j

)
µi(X − σ0(X), . . . , X − σ0(X)︸ ︷︷ ︸

i−j times

, σ0(Y ), . . . , σ0(Y )︸ ︷︷ ︸
j times

) +W 1.

(4.8)

We check that the above maps satisfy properties A), B), C) above.

A) The property evQ(0) = 0 holds since Q ∈ W 0, and the one regarding
the value of evQ′ holds by definition. For the derivative, we compute for
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v ∈ V −1/W−1

d

dt

∣∣∣∣
t=0

evQ(tv) = d

dt

∣∣∣∣
t=0

(Q)tσ−1(v) +W 0

= µQtσ−1(v)

1 (σ−1(v))
∣∣∣∣
t=0

+W 0

= µQ
1 (v).

Here in the second equality we used that (Q)tσ−1(v) = Q̃t, where the latter
is the solution of d

dt Q̃t = µQ̃t

1 (σ−1(v)) with initial condition Q̃0 = Q (this
is a consequence of the fact that the r.h.s. of (4.4) depends linearly on X
and the uniqueness of the solution of (4.4).)

B) The property Rv,Q′(0) = 0 ∈ V 1/W 1 holds since X − σ0(X) ∈ W 0. To
compute (D(R0,Q))0 = µQ

1 we notice that only the j = 1 summand in
(4.8) contributes.

C) Finally, let Q′ ∈ V 0, v ∈ V −1/W−1. As above we write X = (Q′)σ−1(v)

and X = X +W 0= evQ′(v). Then

Rv,Q′(evQ′(v)) = Rv,Q′(X) =
n∑

i=1

1
i!µi(X, . . . ,X) +W 1.

If Q′ ∈ V 0 is Maurer-Cartan, then X also is (by condition c) at the
beginning of this section), so the above expression vanishes.

Remark 4.3.3. The continuity of the multibrackets µk : Sk(V 0) → V 1,
required in property a) at the beginning of this section, was used to ensure that
the map R defined by

R : V −1/W−1 × V 0 → C∞(V 0/W 0, V 1/W 1) (4.9)

(v,Q) 7→ Rv,Q

is continuous see item 2) of the proof of Theorem 4.3.1). Here the right hand
side is equipped with the C1-topology. There is however a different condition
to ensure this which is easier to check, and which we provide in Lemma 4.3.4
below.
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Lemma 4.3.4. Assume that there exists a closed subspace F ⊆ V 0 of finite
codimension such that the multibrackets

µk : Sk(V 0) → V 1/W 1

factor through Sk(V 0/F ). Then the map R as in (4.9) is continuous.

Proof. The proof is analogous to the proof of [Sin22, Lemma 3.22], with the
exception that the map R now takes values in the finite-dimensional subspace
consisting of polynomial maps V 0/F → V 1/W 1 of degree at most n.

4.4 Background on Dirac structures and their
deformations

We recall the definition of Courant algebroids [LWX97], Dirac structures [Cou90],
and following [FZ15] we review an L∞[1]-algebra governing their deformations.

4.4.1 Courant algebroids

We first need to introduce Courant algebroids [LWX97].

Definition 4.4.1. A Courant algebroid over a manifold M is a vector bundle
E → M equipped with a fibrewise non-degenerate symmetric bilinear form ⟨·, ·⟩,
an R-bilinear bracket [[·, ·]] on the smooth sections Γ(E), and a bundle map
ρ : E → TM called the anchor, which satisfy the following conditions for all
e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M):

C1) [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]],

C2) ρ([[e1, e2]]) = [ρ(e1), ρ(e2)]],

C3) [[e1, fe2]] = f [[e1, e2]] + (ρ(e1)f)e2,

C4) ρ(e1)⟨e2, e3⟩ = ⟨[[e1, e2]], e3⟩ + ⟨e2, [[e1, e3]]⟩,

C5) [[e1, e1]] = D⟨e1, e1⟩.

Here we denote D = 1
2ρ

∗ ◦ d : C∞(M) → Γ(E), upon identifying E with E∗

using the bilinear form.
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Example 4.4.2 (Exact Courant algebroids). Let M be a manifold, and H a
closed 3-form on M . The vector bundle TM ⊕ T ∗M acquires the structure of a
Courant algebroid, as follows [ŠW01]. The bilinear pairing is

⟨X1 + ξ1, X2 + ξ2⟩ = ξ2(X1) + ξ1(X2),

where Xi + ξi ∈ Γ(TM ⊕ TM∗), the anchor is the first projection, and the
bracket is

[[X1 + ξ1, X2 + ξ2]]H = [X1, X2] + LX1ξ2 − iX2dξ1 + iX2iX1H. (4.10)

We denote this Courant algebroid by (TM ⊕ T ∗M)H (up to isomorphism it
depends only on the cohomology class of H). When H = 0 this is known as
standard Courant algebroid structure.

Remark 4.4.3. For any ξ ∈ Γ(E), the map adξ := [[ξ, ·]] : Γ(E) → Γ(E) is
an infinitesimal automorphism of the Courant algebroid E. Assuming that
the vector field ρ(ξ) is complete, adξ integrates to a 1-parameter group of
automorphisms of the Courant algebroid E, which we denote by et adξ . For
instance, if E is the H-twisted Courant algebroid as in example 4.4.2, and we
write ξ = (X, η) ∈ Γ(TM ⊕ T ∗M), the 1-parameter group of automorphisms
reads et adξ = (φt)∗ ◦ eBt . Here (φt)∗ is the tangent-cotangent lift of the
flow φt of X, and eBt is the so-called gauge transformation by the 2-form
Bt :=

∫ t

0 (φs)∗(dη − ιXH) ds [Hu07, §2.2][Gua11, §2.2].

Recall that a Lie algebroid is a vector bundle A → M together with a Lie bracket
[·, ·] on the sections Γ(A) and a vector bundle map ρ : A → TM (called anchor),
which are compatible in the sense that [a1, fa2] = ρ(a1)f · a2 + f [a1, a2] for
all sections a1, a2 and all f ∈ C∞(M). The prototypical example is A = TM ,
and indeed Lie algebroids can be regarded as “generalized tangent bundles”.
Notice that at any point p, the bracket makes ker(ρp) into a Lie algebra,
called isotropy Lie algebra. The Lie bracket and anchor of a Lie algebroid can
be equivalently encoded by a degree 1 derivation dA : Γ(∧•A∗) → Γ(∧•+1A∗)
satisfying (dA)2 = 0, called Lie algebroid differential, and defined by a formula
analogous to the one for the de Rham differential on differential forms on a
manifold.

Example 4.4.4 (Twisted doubles). We generalize example 4.4.2 replacing the
tangent bundle TM with any Lie algebroid. Let B be a Lie algebroid over M ,
and H ∈ Γ(∧3B∗) such that dBH = 0. One then obtains a Courant algebroid
structure on B ⊕ B∗, with anchor given by the one of B (thus vanishing on
B∗), and with bracket given as2 in (4.10). Notice that the natural symmetric

2For this purpose, replace the Lie derivative appearing in eq. (4.10) with Cartan’s formula
Laξ := ιadBξ + dBιaξ for all a ∈ Γ(B) and ξ ∈ Γ(B∗).
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pairing on the fibers has split signature. We denote this Courant algebroid by
(B ⊕ B∗)H . When H = 0, this Courant algebroid is known as the double of
the Lie bialgebroid (B,B∗) (where the latter is endowed with the trivial Lie
algebroid structure).

4.4.2 Dirac structures

Definition 4.4.5. Let E → M be a Courant algebroid. A Dirac structure
[Cou90] is a subbundle A ⊆ E which is Lagrangian w.r.t. the pairing (i.e.
A⊥ = A), and which is involutive w.r.t. the Courant bracket.

Remark 4.4.6. Notice that if A ⊆ E is a Dirac structure, then the restrictions
to A of the anchor and of the Courant bracket make A into a Lie algebroid.

Example 4.4.7. Following [ŠW01], we present two classes of Dirac structure
for the Courant algebroid (TM ⊕ T ∗M)H of example 4.4.2, where H is a closed
3-form on M .

a) Let ω be a 2-form on M , and consider the associated vector bundle map
ω♯ : TM → T ∗M,X 7→ ιXω. Then graph(ω♯) is a Lagrangian subbundle
of TM ⊕ T ∗M . It is a Dirac structure in (TM ⊕ T ∗M)H precisely when
dω = −H.

b) Let π be a bivector field on M , and consider π♯ : T ∗M → TM, ξ 7→ ιξπ.
Then graph(π♯) is a Lagrangian subbundle. It is a Dirac structure in
(TM⊕T ∗M)H precisely when π is a H-twisted Poisson structure, meaning
that

[π, π] = 2 ∧3 π♯(H). (4.11)

Example 4.4.8. Generalizing example 4.4.7, let B be a Lie algebroid over
M , and H ∈ Γ(∧3B∗) such that dBH = 0. Let π ∈ Γ(∧2B) such that
[π, π]B + 2 ∧3 π♯(H) = 0. Then graph(π) is a Dirac structure in the Courant
algebroid (B ⊕B∗)H defined in remark 4.4.4.

In particular, 0 ⊕ B∗ is a Dirac structure. When the twist H is not exact,
then this Dirac structure does not admit any Dirac complement. Indeed, any
such complement would be the graph of an element Ω ∈ Γ(∧2B∗) satisfying
−dBΩ = H, yielding a contradiction. (In particular, B ⊕ 0 is not a Dirac
structure).

Remark 4.4.9. Notice that for any ω ∈ Γ(∧2B∗), there is an isomorphism of
Courant algebroids given by

exp(ω♯) : (B ⊕B∗)H → (B ⊕B∗)H−dω, exp(ω♯)(X + α) = X + α+ ιXω.
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This was observed in [Gua11, §2.2] for B = TM . In particular, when H is exact,
we have (B ⊕B∗)H

∼= (B ⊕B∗)0.

Remark 4.4.10. A Courant algebroid over a manifold M induces a partition
of M into immersed submanifolds of varying dimension (called leaves) which are
tangent to the image of the anchor map. The same applies for Dirac structures.

4.4.3 Deformations of Dirac structures

Let E → M be a Courant algebroid, and let A ⊆ E be a Dirac structure.
In other to give a description of the Dirac structures nearby A, we make an
auxiliary choice of Lagrangian complement K (so E = A⊕K as vector bundles),
and express the Courant algebroid structure in terms of A and K.

Remark 4.4.11. A Lagrangian complement of A exists if and only if E is of
even rank 2n and the pairing has signature (n, n) (see e.g. [KW07, Corollary
4.4]).

Since the bracket [·, ·]A := [[·, ·]]|A and the bundle map ρ|A : A → TM make A
into a Lie algebroid (see remark 4.4.6), we denote by dA the corresponding Lie
algebroid differential (it squares to zero).

Identify K ∼= A∗ via the pairing on the fibers of E, i.e. via K ≃−→ A∗, u 7−→
⟨u, · ⟩|A. Notice that A∗ is usually not a Dirac structure. Similarly to the above,
the restriction [η1, η2]A∗ := prA∗([[(0, η1), (0, η2)]]) on Γ(A∗) and the bundle map
ρ|A∗ : A∗ → TM allow one to write down a degree 1 derivation dA∗ of Γ(∧•A),
which generally does not square to zero.

Consider also the map

Γ(∧2A∗) → Γ(A) , η1 ∧ η2 7→ prA([[(0, η1), (0, η2)]]),

which measures the failure of A∗ to be a Dirac structure, and view it as an
element Ψ ∈ Γ(∧3A).

From Ψ, (A, [·, ·]A, ρ|A), and (A∗, [·, ·]A∗ , ρ|A∗) one can reconstruct the Courant
algebroid structure on E = A⊕A∗: the bracket is recovered as

[[(a1, η1), (a2, η2)]] = (4.12)(
[a1, a2]A + Lη1a2 − ιη2dA∗a1 + Ψ(η1, η2, ·) , [η1, η2]A∗ + La1η2 − ιa2dAη1

)
and the anchor as ρA + ρA∗ : A⊕A∗ → TM ([Roy, §3.8], see also [KS05, §3.2]).
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The statement of [FZ15, Lemma 2.6] reads as follows3:

Proposition 4.4.12. The graded vector space Γ(∧•A∗)[2] has an L∞[1]-algebra
structure4 {µk}, whose only non-trivial multibrackets µ1, µ2, µ3 are defined as
follows:

µ1(α[2]) = (dAα)[2]

µ2(α[2], β[2]) = (−1)|α|[α, β]A∗ [2]

µ3(α[2], β[2], γ[2]) = −(−1)|β|(α♯ ∧ β♯ ∧ γ♯)Ψ[2].

Further, MC elements ε ∈ Γ(∧2A∗) of this L∞[1]-algebra parametrize Dirac
structures L ⊆ E that are transverse to K, via

L = graph(ε♯) = {a+ιaε♯ | ξ ∈ A} ⊆ A⊕A∗ ∼= E.

Here we define α♯a := ιaα, and

(α♯ ∧ β♯ ∧ γ♯)(x1 ∧ x2 ∧ x3) =
∑

σ∈S3

(−1)σα♯(xσ(1)) ∧ β♯(xσ(2)) ∧ γ♯(xσ(3)),

for all homogeneous α, β, γ ∈ Γ(∧•A∗) and all xi ∈ Γ(A).

4.5 Gauge equivalences for Dirac structures

As in §4.4.3, let E be a Courant algebroid, A a Dirac structure, and choose a
Lagrangian complement, which we identify with A∗ using the pairing (hence
E = A⊕A∗ as vector bundles). The main result of this section is Proposition
4.5.2, which gives a geometric description of the gauge equivalence relation that
the L∞[1]-algebra of Proposition 4.4.12 induces on the Dirac structures nearby
A.

Recall from rmk 4.4.3 that any element ξ ∈ Γ(A∗) induces a one-parameter
group of Courant algebroid automorphisms defined for small t, via et adξ , where
adξ = [[ξ, ·]]. We will use repeatedly the following fact, which follows immediately
from eq. (4.12):

adξa = Lξa,−ιadAξ

3The global minus in front of the ternary bracket, was erroneously omitted in [FZ15,
Lemma 2.6].

4This L∞[1]-algebra structure depends on the choice of K, but it is independent of this
choice up to L∞[1]-isomorphism [GMS20][Tor22].
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for all a ∈ Γ(A).

Let ε ∈ Γ(∧2A∗) be a Maurer-Cartan element of the L∞[1]-algebra Γ(∧•A∗)[2]
of Proposition 4.4.12 (hence graph(ε♯) is a Dirac structure). For any compactly
supported ξ ∈ Γ(A∗), we obtain a smooth one-parameter family of Maurer-
Cartan elements, given by the unique solution εt of the equation

ε̇t = −dAξ + [ξ, εt]A∗ + 1
2(ξ♯ ∧ ε♯

t ∧ ε♯
t)Ψ, (4.13)

subject to the initial condition ε0 = ε. This is the gauge equation associated to
the element −ξ in the L∞[1]-algebra Γ(∧•A∗)[2], cf. equation (4.4).

Remark 4.5.1. We call gauge equivalence relation the equivalence relation
on Maurer-Cartan elements generated by the following: two Maurer-Cartan
elements are related if they can be written as ε0 and ε1 as above for some
ξ ∈ Γ(A∗). For a comparison of the gauge equivalence relation with other notions
in terms of polynomial paths found in the literature, see [DP16, Proposition 9]
(see also [KS22, remark 5.22]).

The following proposition states that the 1-parameter family of Dirac structures
graph(ε♯

t) is obtained applying Courant algebroid automorphisms to graph(ε♯).

Proposition 4.5.2. Let E = A⊕A∗ be a Courant algebroid as in §4.4.3. Let
ξ ∈ Γ(A∗) be compactly supported, and ε ∈ Γ(∧2A∗) be a Maurer-Cartan element
of the L∞[1]-algebra of Proposition 4.4.12. Let εt ∈ Γ(∧2A∗) be determined by
the property

graph(ε♯
t) = et adξ graph(ε♯), (4.14)

for t ∈ R close enough to zero.

Then εt is the unique solution of eq. (4.13) satisfying ε0 = ε.

Remark 4.5.3. Since prA : graph(ε♯) → A is an isomorphism, by continuity
we have that prA : et adξ graph(ε♯) → A is an isomorphism for t in an open
interval around zero, since ξ is compactly supported.

Proof. Given a ∈ A, we use the notation

Y a
t := et adξ (a+ ε♯a).

Then the R.H.S. of eq. (4.14) can be written as {Y a
t : a ∈ A}. So eq. (4.14) is

equivalent to the condition that

ε♯
t(prA(Y a

t )) = prA∗(Y a
t ) (4.15)

for all a ∈ A (here we made use of remark 4.5.3).
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Now adopt the notation
xa

t := prA(Y a
t ).

Notice that

adξY
a

t = adξ

(
xa

t + prA∗(Y a
t )
)

= adξ(xa
t ) + adξ(ε♯

tx
a
t ) (4.16)

using eq. (4.15) in the last equality.

For every section a ∈ Γ(A), we take the time derivative of eq. (4.15), and write
it out using eq. (4.12) and (4.16):

• taking the time derivative of the LHS we get

ε̇♯
t(prA(Y a

t )) + ε♯
t(prA(adξY

a
t )) = ε̇♯

t(xa
t ) + ε♯

t

(
(Lξx

a
t ) + Ψ(ξ, ε♯

tx
a
t , · )

)
.

• Taking the time derivative of the RHS of eq. (4.15), we get

prA∗(adξY
a

t ) = −ιxa
t
dAξ + [ξ, ε♯

tx
a
t ]A∗ .

Hence the time derivatives of the LHS and RHS of eq. (4.15) are the same iff

ε̇♯
t(xa

t ) = −ιxa
t
dAξ + [ξ, ε♯

tx
a
t ]A∗ − ε♯

t(Lξx
a
t ) − ε♯

t(Ψ(ξ, ε♯
tx

a
t , · )). (4.17)

Using Lemma 4.5.4 and Lemma 4.5.5 below, we see that the RHS of eq. (4.17)
can be written as

ιxa
t

(
−dAξ + [ξ, εt]A∗ + 1

2(ξ♯ ∧ ε♯
t ∧ ε♯

t)Ψ
)
.

This, together with remark 4.5.3, shows that εt is the unique solution of the
differential equation (4.13) with ε0 = ε.

Lemma 4.5.4. For all ξ ∈ Γ(A∗), ε ∈ Γ(∧2A∗), a ∈ Γ(A) the following identity
holds:

ιa[ξ, ε]A∗ = [ξ, ε♯a]A∗ − ε♯(Lξa).

Proof. Let Θ denote the degree 3 function on T ∗[2]A[1] that, together with the
degree −2 Poisson bracket of “functions” {·, ·}, encodes the Courant algebroid
structure of A⊕A∗ (see [FZ15, §2.2] and references therein).

Claim: {{Θ, ξ}, ε} equals [ξ, ε]A∗ ∈ Γ(∧2A∗) plus an element of Γ(A∗ ⊗A).

To prove the claim, we may assume that ε = η1 ∧ η2 for ηi ∈ Γ(A∗). Notice
that by definition {{Θ, ξ}, η1} = [[ξ, η1]] equals [x, η1]A∗ plus an element of Γ(A).
The claim follows from applying the Leibniz rule to {{Θ, ξ}, η1 · η2}.
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From the claim it follows that for all b ∈ Γ(A),
ιbιa[ξ, ε]A∗ = {b, {a, {{Θ, ξ}, ε}}}. (4.18)

Now the graded Jacobi identity for {·, ·} implies
{a, {{Θ, ξ}, ε}} = −{{Θ, ξ}, {ε, a}} − {{{Θ, ξ}, a}, ε} = [[ξ, ιaε]] − ε♯(Lξa),

where to compute the last term we used that the restriction of {·, ·} to Γ(A∗ ⊗A)
is the pairing, that A∗ is isotropic and prA[[ξ, a]] = Lξa. It follows that the
R.H.S. of eq. (4.18) equals ιb

(
[ξ, ιaε]A∗ − ε♯(Lξa)

)
.

Lemma 4.5.5. For all ξ ∈ Γ(A∗), ε ∈ Γ(∧2A∗), a ∈ Γ(A) and Ψ ∈ Γ(∧3A) the
following identity holds:

−ε♯
(

Ψ(ξ, ε♯a, · )
)

= 1
2 ιa

(
(ξ♯ ∧ ε♯ ∧ ε♯)Ψ

)
Proof. The L.H.S. equals Ψ(ξ, ε♯a, ε♯·). For the R.H.S., we may assume that Ψ
is decomposible, i.e. Ψ = x1 ∧ x2 ∧ x3 for xi ∈ Γ(A). We then compute

(ξ♯ ∧ ε♯ ∧ ε♯)Ψ = 2ξ♯(x1) · ε♯x2 ∧ ε♯x3 + cycl. perm.,

and using the relation ⟨ε♯x2, a⟩ = −⟨x2, ε
♯a⟩ it follows that

ιa

(
(ξ♯ ∧ ε♯ ∧ ε♯)Ψ

)
= 2Ψ(ξ, ε♯a, ε♯ · ).

Remark 4.5.6. The statement of Proposition 4.5.2 admits a version in which
ξ ∈ Γ(A∗) is replaced by a smooth 1-parameter family of elements of Γ(A∗),
providing a unified approach to the geometric characterization of the equivalences
of various kinds of geometric structures (e.g. the foliations and pre-symplectic
structures worked out in [SZ20]).

4.6 An application: Stability of fixed points of Dirac
structures

We start with a definition:
Definition 4.6.1. Consider a Courant algebroid E with anchor map ρ : E →
TM and a Dirac structure A. We say that a point p ∈ M is a fixed point of A
whenever ρ(Ap) = 0.

In this section we obtain a stability criterion for fixed points of Dirac structures.
We do so applying suitably Theorem 4.3.1; this yields Proposition 4.6.2, which
we then express in more geometric and explicit terms as Theorem 4.6.7.
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4.6.1 Applying Theorem 4.3.1

Assume that we are in the setup of §4.4.3: E → M is a Courant algebroid,
A ⊆ E a Dirac structure. Make an auxiliary choice of Lagrangian complement
to A, identify the complement with A∗ via the pairing, and denote by ρA∗ the
restriction of the anchor of E to A∗. Suppose that p ∈ M is a fixed point of
the Dirac structure A, i.e. ρ(Ap) = 0. We want to apply Theorem 4.3.1 to the
following data:

i) We take the L∞[1]-algebra V = Γ(∧•A∗)[2], with the brackets µ1, µ2, µ3
as in Proposition 4.4.12. We equip V −1 with the C∞-topology, V 0 with
the C1-topology and V 1 with the C0-topology.

ii) We take the L∞[1]-subalgebra W ⊆ V defined by

W i := {Λ ∈ Γ(∧i+2A∗) | Λp ∈ ∧i+2 ker((ρA∗)p)}. (4.19)

In Lemma 4.8.1 we check that W indeed is an L∞[1]-subalgebra and
that W i ⊆ V i is closed for i = −1, 0, 1. Notice that the Maurer-Cartan
elements of W are precisely those ε ∈ Γ(∧2A∗), such that graph(ε♯) is
Dirac, and p ∈ M is a fixed point of graph(ε♯).

iii) For i = −1, 0 we pick splittings σi : V i/W i → V i = Γ(∧i+2A∗) consisting
of compactly supported sections. This is possible since V i/W i are finite-
dimensional vector spaces.

iv) As Maurer-Cartan element in W 0 we pick Q = 0. Notice that we are
considering Maurer-Cartan elements near 0, which correspond to Dirac
structures near A.

These choices satisfy the properties required just before Theorem 4.3.1:

a) As pointed out in remark 4.3.3, the continuity of the multibrackets
was required in order to make the map R in equation (4.9) continuous.
However, Lemma 4.3.4 provides an alternative condition for R to be
continuous. We therefore instead check that the conditions of Lemma
4.3.4 are satisfied.
Note that the values of µ1 and µ2 in a point q ∈ M only depend on the
first jet of the arguments in q. Moreover, the value of µ3 in a point only
depends on the values of the arguments in q. Consequently, F = I2

pΓ(∧2A)
satisfies the assumptions of Lemma 4.3.4.

b) By the choice of lifts to compactly supported sections in iii) above, the
gauge action exists for all t ∈ R: for any ξ ∈ Γ(A∗) the action et adξ
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is defined as long as the flow of ρ(ξ) ∈ X(M) is defined. As U we can
therefore take any open neighborhood of the origin in V −1/W−1. The
continuity and smoothness assertions of the gauge action follow from a
standard argument using the smoothness of ε ∈ Γ(∧2A∗) and the fact
that the topology on the V i is defined by uniform convergence of some
jet of ε on compact sets.

c) Note that an element ε ∈ V 0 is Maurer-Cartan if and only if its graph
is involutive, by Proposition 4.4.12. As the gauge action is by Courant
algebroid automorphisms (see Proposition 4.5.2), involutivity is preserved.

We apply Theorem 4.3.1 to the data i)-iv) above. In doing so we invoke
Proposition 4.5.2, and we use that µ1 = dA. We further use the isomorphism
of chain complexes (V/W, µ1) ∼=

(
∧•A∗

p

∧• ker((ρA∗ )p) [2], dA

)
given by evaluation at

p (hence the differential dA is computed extending to an element of Γ(∧•A∗),
applying dA and evaluating at p). We obtain:

Proposition 4.6.2. Let E → M be a Courant algebroid with anchor ρ, and
let A ⊆ E be a Dirac structure. Choose a Lagrangian complement, which we
canonically identify with A∗ via the pairing. Let p ∈ M be a fixed point of the
Dirac structure A, i.e. ρ(Ap) = 0. Assume that

H2

(
∧•A∗

p

∧• ker((ρA∗)p) , dA

)
= 0.

Then there exists an C1-open neighborhood U of 0 ∈ Γ(∧2A∗), such that for
any ε ∈ U for which graph(ε♯) is Dirac, the following holds: there is a smooth
family I ⊆ A∗

p/ ker((ρA∗)p), parametrized by a neighborhood of

0 ∈ ker
(
dA :

A∗
p

ker((ρA∗)p) →
∧2A∗

p

∧2 ker((ρA∗)p)

)
,

with the property that x ∈ I implies:

p is a fixed point of eadσ−1(x)(graph(ε♯)). (4.20)

Here σ−1 : A∗
p

ker((ρA∗ )p) → Γ(A∗) is a fixed splitting taking values in compactly
supported sections.

Remark 4.6.3. Instead of W defined by equation (4.19), one could take
W̃ • := IpΓ(∧•+2A∗). Notice that Maurer-Cartan elements in W̃ correspond to
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Dirac structures which coincide with A at p. Applying Theorem 4.3.1 to this
data, one obtains the following statement: assume the vanishing of

H2(Γ(∧•A∗)/IpΓ(∧•A∗)) ∼= H2(∧•A∗
p, dA).

Then for any Dirac structure L near A, there is a family I ⊆ A∗
p, parametrized

by a neighborhood of
0 ∈ ker(dA : A∗

p → ∧2A∗
p),

with the property that x ∈ I implies:

(eadσ−1(x)(L))p = Ap.

From this it follows that p is a fixed point of eadσ−1(x)(L), but in general the
converse does not hold (see remark 4.7.5 later on).

4.6.2 A geometric restatement

In this subsection we rephrase the hypotheses and the conclusions of Proposition
4.6.2, obtaining in Theorem 4.6.7 a geometric statement which does not make
reference to any choice of Lagrangian complements.

Expressing the conclusion of Proposition 4.6.2 in terms of graph(ε♯), we see
that graph(ε♯) has a fixed point nearby p:

Lemma 4.6.4. Let ε ∈ Γ(∧2A∗) and x ∈ I be as in Proposition 4.6.2. Then
(4.20) holds if and only if:

ϕ−ρ(σ−1(x))(p) is a fixed point of ε.

Here ϕ−ρ(σ−1(x)) denotes the time-1 flow of the vector field −ρ(σ−1(x)) on M .

Proof. Write ξ := σ−1(x). Since e−adξ is a Courant algebroid automorphism,
we have ρ◦e−adξ = (ϕ−ρ(ξ))∗ ◦ρ. where ϕ−ρ(ξ) is the time one flow of the vector
field −ρ(ξ). Hence for all Y ∈ Ep we have

ρϕ−ρ(ξ)(p)(e−adξY ) = 0 iff ρp(Y ) = 0.

Applying this to all Y ∈ eadξ graph(ε♯) the conclusion follows.

We address how the fixed points of Lemma 4.6.4 depend on the parameters.
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Lemma 4.6.5. The map

Φ: A∗
p/ ker(ρA∗

p
) → N, y 7→ ϕ−ρ(σ−1(y))(p),

restricted to a suitable neighborhood of the origin, is a diffeomorphism onto its
image. Here N is the leaf of the Courant algebroid through p.

Proof. The anchor at p induces a linear isomorphism

A∗
p/ ker(ρA∗

p
) → ρ(A∗

p) = ρ(Ep) (4.21)

onto TpN . (The equality holds since ρ(Ap) = {0}). In terms of the splitting σ−1,
the above isomorphism is y 7→ ρA∗(σ−1(y))|p. Composing first with −IdTpN

and then with the map Ψ obtained applying Lemma 4.8.2, we obtain exactly
Φ.

We now rephrase the hypotheses of Proposition 4.6.2, without making reference
to the choice of Lagrangian complement.

Lemma 4.6.6. Consider the Lie algebra g := Ap, and denote by dg its
Chevalley-Eilenberg differential.

i) The subspace
h := (ker(ρ|Ep))⊥ (4.22)

is a Lie ideal of g. Here the orthogonal is taken w.r.t. the symmetric pairing.

ii) The cochain complex appearing in Proposition 4.6.2 agrees with
(

∧•g∗

∧•h◦ , dg

)
.

In particular, it is independent of the choice of Lagrangian complement to A.

Proof. We first motivate the definition of h. For any Lagrangian complement K
of A, recall that we make use of the identification K ∼= A∗, k 7→ ⟨k, · ⟩|A. Using
that Ap is Lagrangian and that the anchor vanishes on Ap, one can see that
under this identification, ker(ρ|Kp

) is mapped to

{⟨e, · ⟩|Ap
: e ∈ ker(ρ|Ep

)} = h◦. (4.23)

The equality holds because the annihilator of the l.h.s of (4.23) is given by
ker(ρ|Ep))⊥ ∩Ap, which agrees with h.

i) To see that h is a Lie ideal, we need to check that for any h ∈ h and a ∈ Ap

we have [a, h] ∈ (ker(ρ|Ep
))⊥. Take e ∈ ker(ρ|Ep

). Extending a, h (respectively
e) to sections of A (respectively E), we have

⟨e, [[a, h]]⟩ = −⟨[[a, e]], h⟩ + ρ(a)⟨e, h⟩
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by property C4) in Definition 4.4.1. This function vanishes at p, since ker(ρ|Ep
)

is closed under the Courant bracket and since ρ(a) is a vector field vanishing at
p.

ii) The Chevalley-Eilenberg differential dg preserves ∧•h◦, since h is a Lie ideal
(it suffices to check this for elements of h◦). Hence dg descends to a differential
on the quotient ∧•g∗

∧•h◦ . Observe that the quotient map

(∧•A∗
p, dA) →

(
∧•g∗

∧•h◦ , dg

)
(4.24)

is a surjective chain map with kernel given by ∧•h◦. Since h◦ = ⟨ker(ρ|Kp
), · ⟩|Ap

(see equation (4.23)), the map (4.24) descends to an isomorphism between(
∧•A∗

p

∧•⟨ker(ρ|Kp ), · ⟩|Ap
, dA

)
– as defined just before Proposition 4.6.2 – and(

∧•g∗

∧•h◦ , dg

)
.

We finally can rephrase Proposition 4.6.2 in a more geometric way, and without
making reference to Lagrangian complements.

Theorem 4.6.7 (Stability of fixed points of Dirac structures). Let E → M be
a Courant algebroid whose pairing has split signature. Let A ⊆ E be a Dirac
structure which has a fixed point at p ∈ M , i.e. ρ(Ap) = 0. Denote by g the Lie
algebra Ap, and consider its Lie ideal h := (ker(ρ|Ep

))⊥. Assume that

H2
(

∧•g∗

∧•h◦ , dg

)
= 0.

Fix a neighborhood Ñ of p inside the corresponding leaf of the Courant algebroid.

Then there exists an C1-open neighborhood U of A in the space of Dirac
structures, such that for any L ∈ U there is a submanifold FL of Ñ consisting
of fixed points of L. The dimension of FL equals that of ker

(
dg : g∗

h◦ → ∧2g∗

∧2h◦

)
.

Proof. Since E has split signature, there exists a Lagrangian complement to
A, see remark 4.4.11. This allows us to apply Proposition 4.6.2. We do so
making the following choices in iii) and b) at the beginning of §4.6: the splitting
σ−1 : A∗

p

ker((ρA∗ )p) → Γ(A∗) takes values in sections which, once restricted to the
leaf, are supported in Ñ ; the open neighborhood U of the origin in the domain
is such that Φ|U is a diffeomorphism onto its image, where Φ is the map of
Lemma 4.6.5.
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The cohomological obstruction that appears in Proposition 4.6.2 is identical to
the one of the present theorem, by Lemma 4.6.6.

The conclusions of Proposition 4.6.2 imply those of the present theorem. To
see this, notice that any Dirac structure L close enough to A is the graph of
some element of Γ(∧2A∗). Consider the submanifold I ⊆ U in that proposition.
Using Lemma 4.6.4 and the map Φ of Lemma 4.6.5, it follows that FL := Φ(I)
is a submanifold of Ñ consisting of fixed points of L.

Remark 4.6.8. We have a short exact sequence of cochain complexes

{0} → ∧•h◦ → ∧•g∗ → ∧•g∗

∧•h◦ → {0}

with differentials induced by dg; notice that the first complex agrees with
the Chevalley-Eilenberg complex of the quotient Lie algebra g/h. A piece
of the corresponding long exact sequence in cohomology reads H2(g) →
H2
(

∧•g∗

∧•h◦ , dg

)
→ H3(g/h). In particular, when the Lie algebra cohomology

groups H2(g) and H3(g/h) vanish, the obstruction in Theorem 4.6.7 also
vanishes.
Remark 4.6.9 (Comparison with stability of Lie algebroids). Recall that every
Dirac structure inherits a Lie algebroid structure dA. As one may expect, the
cochain complex appearing in the obstruction in Theorem 4.6.7 does not only
depend on the induced Lie algebroid structure of A: Indeed, g∗/h◦ has the same
dimension as the leaf of the Courant algebroid through the fixed point p, by
(4.21). As any Dirac structure near A induces a Lie algebroid structure on A
which is near dA, there is a relation with the stability of a fixed point of the
Lie algebroid A, as in [CF10]. This relation is reflected in the cohomological
obstructions (see also the text below Theorem 2 in the introduction and Lemma
1.12 of [CF10]). Recall that the cohomological obstruction from [CF10] to the
stability of a fixed point of A as a Lie algebroid is given by H1(g, TpM). Here
the action of g on TpM for x ∈ g, v ∈ TpM is given by

x · v = [ρA(x), v].

For k ≥ 1, the map

∧kg∗ → ∧k−1g∗ ⊗ TpM

α1 ∧ · · · ∧ αk 7→
k∑

i=1
(−1)k−iα1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk ⊗ ρA∗(αi)

descends to an injective chain map
∧kg∗

∧kh◦ → ∧k−1g∗ ⊗ TpM. (4.25)
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For k = 2, the induced map in cohomology relates the cohomological
obstructions.

In general, this map is neither injective, nor surjective, so vanishing of either
cohomological obstruction does not imply vanishing of the other. This is to
be expected, because while Dirac structures near A are contained in the Lie
algebroid structures near dA, the equivalences for Dirac structures only allow
to move p along the leaf through p of the Courant algebroid E. However, if
ρ : E → TM is surjective, then stability of a fixed point in the realm of Lie
algebroids does imply stability of the fixed point of the Dirac structure. This
is reflected at the level of obstructions: if ρ is surjective, then the map in
(4.25) is injective in cohomology, hence the vanishing of H1(g, TpM) implies the
vanishing of the obstruction in Theorem 4.6.7.

Remark 4.6.10. It would be interesting to investigate whether the statement
of Theorem 4.6.7 remains true removing the split-signature condition.

4.7 Examples

In this section we present several examples for Theorem 4.6.7, about the stability
of fixed points of Dirac structures. All our examples are of the kind we describe
in this remark.

Remark 4.7.1. Let B be a Lie algebroid over M and a pick a closed H ∈
Γ(∧3B∗), yielding a Courant algebroid (B ⊕ B∗)H as in example 4.4.4. Let
π ∈ Γ(∧2B) such that

[π, π]B + 2(∧3π♯)(H) = 0. (4.26)

Then A := graph(π) is a Dirac structure, see example 4.4.8. Let p ∈ M be a
fixed point of the Dirac structure A, i.e. Ap ⊆ ker(ρB)p ⊕B∗

p , or equivalently
ρB ◦ π♯ = 0.

One can compute the obstruction as in Theorem 4.6.7, using h = {0} ⊕
ker(ρB)◦

p ⊆ Ap. Often however we prefer to compute the obstruction using the
characterization given in Proposition 4.6.2, since it yields the differential directly,
without the need to make explicit the Lie algebra structure of Ap. A Lagrangian
complement to A is B ⊕ {0}, which by the pairing is identified with A∗. Notice
that the differential on Γ(∧•A∗) ∼= Γ(∧•B) is dB = [π, · ]B + (∧2π♯ ⊗ id)(H)( · )
by [ŠW01, §3]. Hence the obstruction appearing in the theorem is

H2

(
∧•Bp

∧• ker((ρB)p) , [π, · ]B + (∧2π♯ ⊗ id)(H)( · )
)
, (4.27)
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where the differential is computed extending to sections of ∧•B and then
evaluating at p.

Corollary 4.7.2. Fix a closed 3-form H ∈ Ω3(M). Let π ∈ Γ(∧2TM) be an
H-twisted Poisson structure. Let p ∈ M be a point such that πp = 0.

Recall that g := T ∗
pM carries a Lie algebra structure, defined by [dpf, dpg] =

dp{f, g} where f, g are functions. If its second Chevalley-Eilenberg cohomology
vanishes, i.e. H2(g) = 0, then any H-twisted Poisson structure nearby π
vanishes along a submanifold of dimension dim(H1(g)).

For H = 0, this recovers [CF10, Theorem 1.1] for zero-dimensional leaves, and
[DW06, Theorem 1.2] for first order singularities. Note that the obstruction
does not depend on H.

Proof. By example 4.4.7 we know that A := graph(π) ⊆ EH := (TM ⊕T ∗M)H

is a Dirac structure. Further, πp = 0 means that p ∈ M is a fixed point of the
Dirac structure A.

As Lagrangian complement to A we choose B = TM ∼= A∗. The complex
appearing in (4.27) is just ∧•TpM , since the anchor ρ|T M is injective. The
differential reads [π, · ] (notice that the second summand in (4.27) vanishes,
since πp = 0).

This is exactly the complex computing the Chevalley-Eilenberg cohomology of
the isotropy Lie algebra of A at the point p, and this Lie algebra is the one
described in the statement of this corollary.

Example 4.7.3 (Cartan-Dirac structure). Let G be a Lie group with a bi-
invariant, possibly indefinite metric ( · , · ) (for instance, a compact Lie group).
The Cartan-Dirac structure on G was introduced in [ŠW01, example 5.2], and
is a Dirac structure in the twisted Courant algebroid (TG ⊕ T ∗G)−H . Here
H is the Cartan 3-form, i.e. the bi-invariant 3-form on G which at the unit
element reads H(u, v, w) := 1

2 ([u, v], w) for u, v, w ∈ g = TeG. Explicitly, it is
given by A := {(vL − vR, 1

2 (vL + vR)♭) : v ∈ g}, where vL and vR denote the
left-invariant and right-invariant extension, and ♭ denotes contraction with the
metric.

With the induced Lie algebroid structure, A is isomorphic (over IdG) to
the transformation Lie algebroid associated to the action of G on itself by
conjugation. In particular the leaves of the Cartan-Dirac structure A are the
conjugacy classes of G. So the unit e ∈ G is a fixed point of A, and the isotropy
Lie algebra of A at e is just g. By Corollary 4.7.2 we hence know that if
H2(g) = 0 then, for any neighborhood U ⊆ G of e, there exists a neighborhood
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of A in the space of Dirac structures consisting of H-twisted Poisson structures
with a fixed point near p.

In the preceding corollary and example, the twisting 3-forms H could be chosen
such that their cohomology classes are nonzero. However, as the stability
problem is local, the only thing that matters is the cohomology class when
restricting to a neighborhood of a point. When the restricted twisting is exact,
locally there exist a Dirac complement, by example 4.4.8. Below we give an
instance where the twisting is not even locally exact, and there is no locally
defined Dirac complement. In such a case, [Sin22, Theorem 5.50] does not apply,
and one really needs the more general statement we provided in Proposition
4.6.2.

Example 4.7.4. Let M = R4 with coordinates (x1, x2, x3, x4), and let Z
be the self-crossing hypersurface given by the equation x1x2x3 = 0. Let BZ

be the associated c-tangent bundle [MS21]. This is the Lie algebroid whose
sections consist of vector fields on R4 which are tangent to Z; an adapted
frame is provided by {e1, e2, e3, e4}, where ρBZ

(ei) = xi∂xi
for i = 1, 2, 3

and ρBZ
(e4) = ∂x4 . Let {e1, e2, e3, e4} denote the dual frame of B∗

Z . Then
π ∈ Γ(∧2BZ) given by

π = x4e1 ∧ e4

satisfies
[π, π]BZ

= 2 ∧3 π♯(H), (4.28)

for any5 choice of dBZ
-closed H ∈ Γ(∧3B∗

Z). Note that the right hand side
vanishes, as π♯ : B∗

Z → BZ has rank at most 2. Equation (4.28) implies that
A := graph(π♯) is a Dirac structure in the Courant algebroid (BZ ⊕B∗

Z)H , and
p = 0 ∈ R4 is a fixed point since π vanishes there.

To compute the cohomological obstruction, we denote

h := ker((ρBZ
)p) = spanR{e1(p), e2(p), e3(p)}.

Then the complex appearing in (4.27), in the relevant degrees, can be identified
with

Re4(p) h ∧ Re4(p) ∧2h ∧ Re4(p),
[π, · ]BZ

[π, · ]BZ

by using the decomposition (BZ)p = h ⊕ Re4(p). Here, the differential should
be interpreted as extending an element v ∈ ∧ih ∧ e4(p) to a local section
ṽ ∈ Γ(∧i+1BZ), computing [π, ṽ]BZ

(p) and projecting to the subspace given by
∧i+1h∧Re4(p). The cohomology of the above complex at h∧Re4(p) vanishes, as
one sees using the fact that the frame {e1, e2, e3, e4} of B∗

Z consists of pairwise
5For instance H = e1 ∧ e2 ∧ e3.
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commuting sections. Thus Theorem 4.6.7 implies that any Dirac structure in
(BZ ⊕B∗

Z)H close to graph(π♯) has a fixed point near 0.

Remark 4.7.5. In view of remark 4.6.3, notice that Ap = (B∗
Z)p. However,

the vanishing of π as a section of Γ(∧2BZ) is not stable, as the graph of the
c-bivector field πt = π+ te1 ∧ e2 is Dirac, but does not coincide with B∗

Z at any
point for t ̸= 0.

Remark 4.7.6 (On the induced Poisson bivector field). Let B be a Lie algebroid
over M with anchor ρ, let h be a closed 3-form on M , and let π ∈ Γ(∧2B)
satisfying (4.26) for H := ρ∗h. Then πM := (∧2ρ)π is an h-twisted Poisson
bivector field on M . If p is a fixed point of graph(π), then p is a fixed point of
πM , since π♯

M = ρ ◦ π♯ ◦ ρ∗. Therefore, assuming for simplicity that the anchor
ρ is an isomorphism on an open dense set of M , Theorem 4.6.7 implies the
following: if (4.27) vanishes, then any h-twisted Poisson bivector field nearby
πM which can be lifted to B, has a fixed point nearby p. For instance, when B
is the c-tangent bundle associated to a self-crossing hypersurface Z, this is a
statement about h-twisted Poisson bivector field nearby πM which are tangent
to Z. See [Sin22, §5.1.5] for an example in the case h = 0.

4.8 Appendix

In this appendix we prove two lemmas needed in the body of the paper.

Assume the setting and notation introduced at the beginning of §4.6. In item
ii) there, we stated that a certain subspace W is a closed L∞[1]-subalgebra of
the L∞[1]-algebra V introduced there. We now prove this fact.

Lemma 4.8.1. Let W i ⊆ V i be defined by

W i := {Λ ∈ Γ(∧i+2A∗) | Λp ∈ ∧i+2 ker((ρA∗)p)}.

Then

1) W i ⊆ V i is a closed subspace for i = −1, 0, 1,

2) W =
⊕∞

i=−2 W
i is a L∞[1]-subalgebra of (Γ(∧•+2A∗), {µk}1≤k≤3).

Proof.

1) Recall that the evaluation map evp : Γ(∧i+2A∗) → ∧i+2A∗
p is continuous

when the left hand side is equipped with the Ck-topology for some
k ≥ 0. As ∧i+2 ker((ρA∗)p) ⊆ ∧i+2A∗

p is closed, it follows that
W i = ev−1

p (∧i+2 ker((ρA∗)p)) is closed.
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2) Notice that W is invariant under wedge product and the multibrackets
µ1, µ2, µ3 are graded derivations in each entry [GTZ22, Remark B.2].
Because of this it is sufficient to show that W−2 and W−1 – the degree
components that generate W – are closed under the multibrackets. Since
W−2 = V −2 and by degree reasons, we are actually reduced to showing
that for f ∈ W−2 = C∞(M) and X,Y ∈ W−1 = ev−1

p (ker((ρA∗)p)):

µ1(f) ∈ W−1, µ1(X) ∈ W 0, µ2(X,Y ) ∈ W−1.

We already showed the first two statements in the proof of Lemma 4.6.6
ii).
We show that µ2(X,Y ) ∈ W−1. As

µ2(X,Y ) = [[X,Y ]] − Ψ(X,Y, · ),

we note that

ρA∗(µ2(X,Y )) = ρ([[X,Y ]]) − ρA(Ψ(X,Y, · ))

= [ρ(X), ρ(Y )] − ρA(Ψ(X,Y, · )).

Evaluating the right hand side in p, the first term vanishes because it is
the Lie bracket of vector fields ρ(X) and ρ(Y ) which vanish in p, while
the second term vanishes because ρA vanishes at p. This shows that
µ2(X,Y ) ∈ W−1.

The following statement is needed in the proof of Lemma 4.6.5. We include a
proof for completeness.

Lemma 4.8.2. Let N be a manifold, p a point, and consider a linear map
X : TpN → Xc(N) to the compactly supported vector fields, mapping each vector
v ∈ TpN to a vector field Xv extending it (i.e. Xv(p) = v). Denote by ϕ1

Xv the
time-1 flow of Xv. Then the map

Ψ: TpN → N, v → ϕ1
Xv (p),

when restricted to a suitable neighborhood of the origin, is a diffeomorphism
onto its image.

Proof. We can express Ψ in terms of the vector field Y on N × TpN defined by
Y (q, v) := Xv(q), as follows: Ψ(v) = prN (ϕ1

Y (p, v)). This description implies
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that the map Ψ is smooth. The derivative of Ψ at the origin is IdTpM , as one
computes

(d0Ψ)(v) = d

dt

∣∣∣∣
t=0

Ψ(tv) = Xv(p) = v

using ϕ1
Xtv = ϕ1

tXv = ϕt
Xv . Hence the statement follows from the inverse

function theorem.
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Chapter 5

Conclusion and outlook

In Chapter 2, we first computed some examples of universal L∞-algebroids of
linear foliations, motivated by the question whether in this case there exists a
universal L∞-algebroid with only a unary and binary bracket. While we showed
that for the Lie algebra of endomorphisms preserving a linear symplectic form on
a vector space, there exists a universal Lie n-algebroid with a non-zero ternary
bracket, this does not give a conclusive answer to the question, as the universal
Lie n-algebroid is not unique. It would be interesting to further investigate this
question.

We also gave a constructive way to obtain some invariants extracted from
a universal L∞-algebroid of a linear foliation, without needing the universal
L∞-algebroid, in particular the dimension of the vector bundles involved in
a geometric resoution of a foliation which is minimal at a fixed point of the
foliation. A natural question we would like to further investigate is then whether
the whole projective resolution could be obtained in a constructive way.

In Chapters 3 and 4, we proved algebraic theorems about differential graded
Lie algebras and L∞[1]-algebras, giving sufficient criteria for the inclusion of a
subalgebra to induce a local surjection on the space of Maurer-Cartan elements
up to equivalence. This question arose as the framework behind studying the
stability of fixed points of geometric structures that induce singular foliations.

This reformulation paves the way for a variety of questions. In the examples
we considered, the property whose stability we studied was associated to a
point and was a finite-dimensional condition. The general problem of stability
of compact leaves can however also be formulated in this way, by choosing
an appropriate differential graded Lie subalgebra, which does not have finite
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codimension. Moreover, in the case of Lie algebroids and Poisson structures, our
cohomological obstruction is consistent with the cohomological obstruction of
[CF10]. Further work could extend in two directions, which are closely related:

- Addressing specific stability problems.

- Further develop the general framework.

For specific stability problems, the stability of higher-dimensional leaves of
the structures considered in this thesis are natural generalizations. While
the algebraic theorems in this thesis do not apply, they nevertheless give a
candidate for the cohomological obstruction. Additionally, one can also consider
the stability of leaves with extra structure, of which the stability of symplectic
leaves as in [CF10] is an example. Furthermore, given a geometric structure
that induces a singular foliation, it can often be restricted to the leaf. The
question is then when the leaf is stable, such that the corresponding restrictions
are isomorphic.

Beyond problems that are related to stability of leaves, there are also algebraic
applications of Theorem 3.3.20. It can be shown that in particular, the results
of [CSS14] and their analogues for finite-dimensional associative algebras can
also be recovered from Theorem 3.3.20. These results have natural analogues
for Lie algebroids. Furthermore, when considered from a geometric perspective,
a natural question given a flat connection on a vector bundle E → M which
is compatible with some G-structure, is when nearby flat connections are also
compatible with the G-structure up to equivalence.

In the direction of associative algebras, it would also be interesting to explore
applications in operator algebras.

To further develop the general framework, a natural question is to what extent
the hypothesis of finite codimension can be relaxed in Theorems 3.3.20 and
4.3.1, in order to give a unified framework to handle the questions mentioned
above.

Another direction to extend the general framework to is to consider more general
morphisms of L∞[1]-algebras. This could include passing from the inclusion of
a L∞[1]-subalgebra to a general (strict) map of L∞[1]-algebras, or to consider
general L∞[1]-morphisms (see for instance [KS22] for a definition), which also
induce a map on Maurer-Cartan elements up to equivalence.
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